
lJ. 22089

VIC20
Programmer's

Notebook
Earl R. Savage

~ I 01 .lJ.-Lll:..C.I lOP.!! CONTINUING EDUCATION SERIES'" .J_,J, IJWiJL. n~lll:l edtted by Ttrus. Ttrus & Larsen

The Blacksburg Continuing Education'M Series

The Blacksburg Continuing Education SeriesT" of books provide a laboratory-or experiment­
oriented approach to electronic topics. Present and forthcoming titles in this series include:

• Advanced 6502 Interfacing
• Analog Instrumentation Fundamentals

• Apple II Assembly language
• Apple Interfacing
• Basic Business Software
• Basic Robotics Concepts
• BASIC Programmer's Notebook

• Circuit Design Programs for the Apple II
• Circuit Design Programs for the TRS-80
• Computer Assisted Home Energy Management

• Computer Communication Techniques

• Design of Active Filters, With Experiments
• Design of Op·Amp Circuits, With Experiments
• Design of Phose-locked loop Circuits, With Expe riments

• Design of VMOS Circuits, With Experiments
• 8080/8085 Software Design (2 Volumes)

• 8085A Cookbook
• Electronic Music Circuits
• Fiber Optics Communications, Experiments, and Projects
• 555 Timer Applications Sourcebook, With Experiments

• FORTH Programming
• Guide to CMOS Basics, Circuits, & Experiments
• How to Program and Interface the 6800
• Introduction to Electronic Speech Synthesis
• Introduction to FORTH
• Microcomputer-Analog Converter Software and Hardware Interfacing

• Microcomputer Data-Base Management

• Microcomputer Design and Maintenance
• Microcomputer Interfacing With the 8255 PPI Chip
• NCR Basic Electronics Course, With Experiments
• NCR EDP Concepts Course
• PET Interfacing
• Programming and Interfacing the 6502, With Experiments

• Real Time Control With the TRS-80
• 16·Bit Microprocessors

• 6502 Software Design
• 6801, 68701, and 6803 Microcomputer Programming and Interfacing
• The 68000: Principles and Programming
• 6809 Microcomputer Programming & Interfacing, With Experiments

• STD Bus Interfacing
• TEA : An 8080/8085 Co-Resident Editor/ Assembler
• TRS-80 Assembly language Mode Simple
• TRS-80 Color Computer Interfacing, With Experiments
• TRS-80 Interfacing (2 Volumes)
• TRS-80 More Than BASIC
• Word processing for Small Businesses

In most cases, these books provide both text material and experiments, which permit one to

demonstrate and explore the concepts that are covered in the book. These books remain among

the very few that provide step~by-step instructions concerning how to learn basic electronic con­

cepts, wire actual circuits, test microcomputer interfaces, and program computers based on popu­
lar microprocessor chips. We have found that the books are very useful to the electronic novice
who desires to join the "electronics revolution," with minimum time and effort.

Jonathan A. Titus, Christopher A. Titus, and David G. Larsen

"The Blacksburg Group"

Bug symbol tr~demark The Blacksburg Group, Inc., Blacksburg, VA 24060

[

[

,[

,I [

\[VIC20

[PROGRAMMER'S
· [NOTEBOOK

I[

[

'(

tc
I(

[

(

,1[

Earl R. Savage

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright© 1983 by Jerls, Inc.

FIRST EDITION
FIRST PRINTING- 1983

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without

written permission from the publisher. No patent
liability is assumed with respect to the use of the
information contained herein. While every pre­
caution has been taken in the preparation of this
book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed
for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-22089-X
Library of Congress Catalog Card Number: 83-50494

Edited by: Welborn Associates
Illustrated by: David K. Cripe

Printed in the United States of America.

[

[

[

[

[

[

[

[

[

[

[I

[

[

[

[

[

[

[

[

[

[

[

[

[

L
[

Preface

This Notebook is dedicated to the proposition that program
writing on the VIC-20 can be both easier and better. That state­
ment includes every type of program-game, tutorial, financial,
mathematicaf, and record keeping - in short, whatever you set
your VIC 20 to do.

All of us begin our programming with efforts that are both
simple and crude. Enough effort and debugging made them do
the job in spite of their crudeness. No one starts out with flawless
programming. In fact, it is extremely doubtful that anyone ever
achieves perfection because there is just too much to learn,
especially considering the continuous improvements made in
both hardware and software. So, this Notebook is designed for
you, the VIC 20 programmer-user, whether you are a beginner or
an old hand.

If you are getting started, you can achieve better program­
ming results by using the techniques and subroutines in this book
because here you will find shortcuts and "tricks of the pro­
grammer's trade." There are subroutines and other statement
sequences that are designed to "dress up" your programs and
make them more professional in appearance. Also, there are
techniques for increasing their effectiveness and efficiency. You
will find instructions and explanations for making your VIC 20 do
things that have not yet occurred to you. Best of all, any of these
Notes can be copied directly into your programs because they are
written specifically for the VIC 20.

Be advised that there are few programs in this book. There are
many subroutines and program fragments that you can use;
however, the programs will have to be yours. These Notes will
help you do the job- they won't do it for you. There is no sub­
stitute for your imagination and sense of purpose.

If you are an advanced programmer, you will find this book a
"cafeteria of ideas." There are techniques that you may not
have thought of yet. More importantly, these new and different
ideas have been worked out for you to save you time. It isn't that
you could not work them out for yourself- it's just quicker and
easier this way. Why spend your valuable time reinventing the
wheel?

ALL of the program statements in this book are written in the
VIC 20 language - no translation is necessary. The statements
make use of the specific features of the VIC 20 keyboard, codes,
memory locations, and so on.

Each topic and each subroutine in this Notebook is stated
clearly and explained in detail- how it works, why it works, and
when and how to use it. Flowcharts are used when needed to
clarify the logic further. Interesting and useful variations are pre­
sented or suggested.

As indicated previously, no one knows all the possible pro­
gramming "tricks." Therefore, you won't find them all here. I'm
still learning new ones and you probably know some that I
haven't yet found. Others will develop as we continue pro­
gramming. Make your own additions to the Notes in this book.
In that way, your cafeteria will always have food for your pro­
gramming tray.

For now, take full advantage of this smorgasbord. GOOD
PROGRAMMING TO YOU!

To Ben and Brian

for whom this will become

child's play.

EARL R. SAVAGE

[

[

[

L
[

[

[

[

[

[

[

[

[

[

[

[

[·

r
[

[

[

[

[

[

[

[

[

[

Contents

HOW TO USE THIS BOOK

CHAPTER 1
PROGRAMMING CONSIDERATIONS 15

Characteristics of a Good Program - Programming for
Memory Conservation - Programming for Speedy
Operation - Flowcharts

CHAPTER 2
NOTES: INPUT CONTROLS ... 31

Multicharacter Response with GET - Evaluating
Values With Input - Formatted Input - Default In­
puts - No-Error Response (Word) - No-Error Re­
sponse (Character)- Multiple-Trial Response- Time­
Limited Response- Time-Weighted Response- Re­
verse Response - Collected Variations on the Preced-
ing Notes

CHAPTER 3
FURTHER PROGRAMMING CONSIDERATIONS 55

Memory Changes - Error Trapping - Numbering Sys­
tems Review - Number Storage

CHAPTER 4
NOTES: CURSOR CONTROL AND GRAPHICS 65

Determining the Cursor Position - Positioning the
Cursor With SPC - Positioning the Cursor With
FOR/NEXT - Positioning the Cursor With POKE -
Prohibiting Lihes to the Cursor - Random Placement
of the Cursor - Programming Graphics - Graphic
Face - Moving Graphics No. 1 - Moving Graphics No.
2 - Accelerating/Decelerating Motion

CHAPTER 5
MEMORY 0RGANIZA TION AND THE OPERATING SYSTEM 85

BASIC Language Considerations - Screen RAM Use -
Summary

CHAPTER 6

NOTES: THE DISPLAY .. 93
Printing in Groups - Split-Screen Operation -
Adjustable Clear No. 1 - Adjustable Clear No. 2-The
Rising Display- The Unfolding Display- The Shifting
Display - Saving the Display

CHAPTER 7

"HOUSEKEEPING" IN RAM 111
The Zero Page - Above the Zero Page - Self­
Adjusting Programming - Summary

CHAPTER 8

NOTES: PEEK AND POKE 119

[

[

[

[

[
Timers and Delays - Repeating Keys - Reserved [
Memory No. 1 - Reserved Memory No. 2 - Append -
Dual Programs- Merge- Accommodation to Various
Memory Sizes - Data Transfer Between Programs - [
Key Disables

CHAPTER 9

COLOR ... 133
Color Generation - Summary

CHAPTER 10

NOTES: DATA MANAGEMENT 141
Arrays of Random Characters - Equalizing Variable
Lengths - Concatenating Data - Parsing Data -
Finding Buried Data - Bubble Sort - Sheii-Metzner
Sort

CHAPTER 11

SOUND GENERATION ... 165
The Controls - Summary

CHAPTER 12

[

[

[

[

NOTES: COMBINING GRAPHICS, COLOR, AND SOUND 171 [
Musical Interlude - Galloping Horse -Jumping Jack
- "That" Dog, Again - Bouncing Ball Explodes

CHAPTER 13 [

PROGRAM STATEMENT STRUCTURE 183
Program Statements in Memory - Applications - [.
Utility Programs- Utility Summary

[

f

[

[

[

[

r
[

[

[

[

[

[

[

[

CHAPTER 14

JOYSTICK, PADDLES, AND LIGHT PEN 201
The Joystick - Paddles - The Light Pen

CHAPTER 15

PRIVACY AND PROGRAM PROTECTION 213
Delete Remarks- Pack Your Program- Invisible Lines
- Disable Certain Functions - Concealed Identif­
ication - Hiding Words - Encoding - Summary

CHAPTER 16

MISCELLANEOUS NOTES .. 221
Nonrepeating Selection - The Function Keys -
Setting the Odds - Indefinite Delays - Flashing
Screen - Standard Subroutine Package

APPENDIX A

USEFUL MEMORY LOCATIONS 233

APPENDIX B

BASIC WORDS, ABBREVIATIONS, AND TOKENS 235

APPENDIX C

SCREEN RAM MAP .. 239

APPENDIX D

DISPLAY SCREEN CODES .. 241

APPENDIX E

COLOR RAM MAP ... 243

APPENDIX F

COLOR TABLES .. 245

APPENDIX G

CHR$ AND ASCII CODES ... 247

APPENDIX H

DECIMAL TO BINARY AND BINARY TO DECIMAL CONVERSION 249

INDEX .. 251

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r

[

[

[

l

How To Use This Book

ORGANIZATION OF THE CONTENT

The VIC 20 Programmer's Notebook is generally organized into
alternating chapters of the "how and why" things function as
they do and chapters of actual Notes of "how-to-do-it." The
Notes in any one chapter are grouped around one or two topics
as indicated in the title, with the exception of the last chapter
which contains a potpourri of useful routines not fitting into the
other topics.

The major purpose of this book is to serve as a reference. It is a
source of solutions to problems that you will encounter sooner or
later in your program writing. This is not a book, however, which
you should put away until you have a programming problem. Its
value to you will increase as your knowledge of its content
increases. At least, read it through so that you will know where
to find the solutions when the problems do arise.

The best way to use this·book is to experiment with each Note
until you understand how it functions. Key in the statements and
run them. Take your time and use care when typing any of the

9

10 • VIC 20 Programmer's Notebook

listing and variation statements. Type them exactly as shown. Be
particularly careful to avoid confusing the digit 1 with the letter I
and the digit 0 with the letter 0. Watch out for the punctuation
marks, especially trailing semicolons which are quite easy to
overlook.

Sometimes, it will be necessary to supply a simple program that
will call the subroutine that you are studying. As an alternative,
you can use an existing program and substitute the new
technique for the one in that program.

In any case, when the program is up and running, study the
analysis and the flowchart. When you have a fairly good idea of
what is going on, try the variations suggested. Then, you should
be ready to apply the Note to your own programs.

LISTING CONVENTIONS

Throughout this book, reversed letters (e.g., lftiWI) desig­
nate a single keypress. That is, when this designation is used, it
means the reversed letters· are a single keystroke on the key­
board (or keys that are pressed simultaneously to produce a
desired result) instead of being input as individual characters.

The VIC 20 and some other machines make use of special
symbols when certain special-purpose keys are used in writing a
program statement. In your VIC 20, for example, an R in a color
block means that reverse print is activated and a heart symbol in
a block means that the IOi=U::U keys have been
used. Often you will see program listings that show those
symbols.

You will not find that type of program listing in this Notebook.
I'm a slow learner, perhaps, but the fact is that I had used the VIC
20 for a long time before I knew what to key in when one of
those symbols appeared in a printed listing. (Would you believe I
still don't recognize all of them??) In any case, there is no need
to add to your possible confusion so you won't find those sym­
bols here. You can key in the routines in this book without know­
ing a one of them.

The listings on the following pages show you exactly which
keys to press- not what appears on the screen as a result of the
keypress. When you see lftjl;11-llJI, just press the Control and 9
keys together- never mind what symbol is displayed. If two re­
versed keys are joined by a hyphen, as shown here, press them at

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

[

[

[

[

[

\[

[

[

[

[

[

[

How To Use This Book • 11

the same time (well, press the first one a bit before the second).
When a reversed key is not joined to another by a hyphen, just
press it alone as you would with leJIIt;J*J and •12-1111. When
you see llh!Ju1;1, just press the Commodore symbol key.

A single or double reversed keypress may be followed by a
"modifier" in parentheses. For example lil ti1ffim1 (4 times)
means to press the right cursor 4 times. The modifier is applied to
the last keypress only - not all those in the line.

The use of this convention in the listings does have one
potential drawback. It is done at the sacrifice of brevity, of
course. The listings sometimes look much longer than they are.
Don't be discouraged by the apparent length - remember that
all those words just represent individual keypresses and they
eliminate the guessing by telling you exactly which ones to press.

The "Build" Utility Program

While working on the manuscript for this book, I developed a
little program called Build. It saved a lot of time in running, re­
running, modifying, and remodifying the routines here. It can
do the same for you as you study these routines and modify them
to suit your special needs. I would like to share it with you.

Program Listing

15 5C = 256 * PEEK (648): CO = 38400: IF 5C < 5000 THEN CO =
37888

20 51 = 36874 : 52 = 36875 : 53 = 36876 : NO = 36877 : VO =
36878

85 POKE VO + 1, 8: POKE 646, 3
90 PRINT CHR$ (147);

999 ::::::
1000 POKE VO, 15 : POKE 52, 235 : FOR U = 1 TO 100 : NEXT: POKE

VO, 0 : POKE 52, 0
1005 PRINT "*";
1010 POKE 198, 0
1015 GET U$

12 • VIC 20 Programmer's Notebook

1020 IF U$ = ""THEN 1015
1025 U = ASC (U$)
1030 IF U = 134 THEN RETURN
1035 IF U = 135 THEN RUN
1040 IF U = 133 THEN 1000
1045 IF U = 136 THEN LIST -998

Analysis

15 sets variable SC equal to the start of the Screen RAM and variable
CO equal to the start of the Color RAM regardless of any memory
that you may have added to your VIC 20.

20 sets variables 51, 52, and 53 to the addresses of the three tone
generators and variables NO and VO to the addresses of the noise
generator and the volume control, respectively.

85 changes the display to a black background with cyan printing for
ease on the eyes (use your favorite colors).

90 clears the screen and homes the cursor.

Notice that now the machine is ready to execute a program
involving sound and PEEKs/POKEs into Screen RAM and Color
RAM. This is a general "setup" that provides plenty of space for
the addition of specifics in any given instance. Normally, you
would begin the program or routine that you are studying with
line number 100.

999 simply provides a convenient reference number (it's easy to hit
the 9-key three times) and some separation from the preceding
program/routine.

1000 sounds a short tone as a reminder that it is time for you to do
something.

1005 PRINTs an asterisk in case you didn't hear the tone.
1010-1025 clears the keyboard buffer, waits for you to press a key,

and determines the ASCII value of the key you press.
1030 if the key was W. it transfers back to the main program/routine

which must have called it with a GOSUB999.
1035 if the key was w. the program is RUN again.
1040 if the key was IIJ, it transfers back to the specified line number

which must be set according to need (if you start off with a
1000, you will be reminded if you have forgotten to set a
needed line number).

1045 if the key wasW, it LISTs the program up to line 998 (normally,
you aren't interested in seeing this part of the program).

[

[

[

[

[

[

[

[

[

[

[

[

[

[.

L
[

[

[

[

[

[

[

L

[

How To Use This Book • 13

Notice that any other keypress will END the program and bring up the
usual "READY" sign.

Of course, you can use any keys in lines 1030-1045 or even add
more. The function keys are convenient though. On my machine,
I have stuck little labels beside those keys (GOTO, RETURN, RUN,
and usn.

When you have a program or routine to work on, just load
Build and write the statements between lines 90 and 999. An
alternate procedure for use with an existing program is to
Append lines 1000-1045 to it. Instructions for appending one
program (or part) to another will be found in Chapter 8.

Build looks so simple that it may seem not worth the effort to
key in and use it but do give it a try. To paraphrase that old
potato chip slogan, you can't use it just once.

SLOW SCROLL

It is often necessary to check the LISTing when you are writing
a program. Under ordinary circumstances the LIST scrolls up the
screen so fast that you don't have time to read it. If you hold
down the lji;JI key, the scrolling will be slowed considerably.

CAVEAT

Occasionally, you may do everything just right yet be surprised
to find the display quite different from your expectations. More
often than not, you will fail to see something that you expected.
When this happens, check your colors carefully.

It sounds strange, but you can get yourself easily into a
situation where you are trying to create a display with PRINT
and/or POKE with characters of the same color as the back­
ground! You may think that this will never happen but the VIC 20
has so many ways to change character and background colors
that you will lose track of them sooner or later. Having the
characters and the background the same color is like whistling in
the dark - it doesn't help because you can't see anything
anyway.

Watch out for the colors but if it does happen, make a quick
check by changing the background color. If your characters show
up, you know that you have found the problem.

[
14 • VIC 20 Programmer's Notebook [
SUMMARY

The final and most important suggestion for using this book is [
to let it become the nucleus of your own personal notebook.
Add any further variations that you discover. Add notes about
other useful techniques and routines. If you do this, you will c·
have an increasingly valuable resource for improving your
programs.

[

[

[

[

[

[

[

[

[

[

[

[l

[:

[' CHAPTER 1

[

[

[

[

[

[

r
L

,L

Programming
Considerations

This is the first of alternating chapters in the VIC 20
Programmer's Notebook containing information that will enable
you to use the chapters of Notes more effectively. Impatience,
however, may prompt you to skip over to the chapters of Notes
to see what information is there that you can apply to your pro­
gram writing right now. That is a normal desire. Go ahead -
take a look - but don't forget to come back. If you fail to read
this chapter, you could have real problems later.

In order that you won't miss anything, the following
statement will mark time until you return.

FOR X = 0 TO 10000 : FOR Y = 0 TO 10000 : NEXT Y : NEXT X

Welcome back! Now that you have that urge under control, it
is time to do a bit of thinking about how you can get the most
out of the Notes in this book. Oh, all of them will work just the
way they are written, but you can make them work even better.
For example, look back at the delay statement. Though it .does
run just as it is shown, surely you would not want to waste all
that memory space. We will consider that and other things in this
chapter.

15

16 • VIC 20 Programmer's Notebook

CHARACTERISTICS OF A GOOD PROGRAM

Quite possibly there are as many definitions of what
constitutes a "good" program as there are programmers {and
would-be programmers}. Even the recognized experts disagree
on the relative importance of accepted characteristics and on the
finer points of good programming.

Nevertheless, every programmer develops his or her own
definition - sometimes deliberately with considerable thought
but, more often, by default. After all, when you stop working on
a program, you must have decided that it is "good." For best
results, h·owever, you should make the decision rationally rather
than by default. You can do this by considering carefully some of
the most widely accepted program characteristics.

You must be aware, too, that a program that is "good" for
one type of use may not be at all satisfactory in another use. A
program that you write strictly for yourself must meet only your
personal requirements. You may be quite satisfied that it does
what you wish to have done and no other criteria are important.

If you give copies of your program to friends, however,
minimum quality standards are not enough. Further, if you sell
or plan to sell your program, it must meet very high standards,
indeed.

There is, then, no absolute answer to the question, "What is a
good program?" The answer is relative, or as is often stated,
"Beauty is in the eye of the beholder!" With that in mind, here
are some characteristics that have been offered as being
essential to a "good" program.

1 . A good program does what it was designed to do every
time it is used, provided the operator follows simple
instructions.

This characteristic is on everyone's list. It is the bare­
bones necessity. A program that still has "bugs" cannot be
considered good by any stretch of the imagination.

2. A good program is foolproof.
Another way of stating this is to say that a good

program cannot be made to crash or otherwise misbehave
even when a fool sits at the keyboard. As a very minimum,
an effective error trap is required. Additionally, types of
acceptable responses should be made known to the user.

[

[

[

[_

[

[

[

[

[

[

[

[

[

[

[

r

r

[.

Programming Considerations • 17

Ideally, your program should simply reject any improper
responses, such as those that would result in dividing by
zero and those containing a letter when a numerical
answer is requested.

3. A good program "looks" good.
While the visual appearance of displays and printouts

may be considered as cosmetic, actually it can enhance the
user's understanding simply by being clearer to him or her.
Charts, graphs, data tabulations, and the like should be
concise yet complete, well labeled, and well designed
{good spacing and good proportions). Even directions and
explanations must be well presented both in wording and
spacing. It takes very few additional bytes to space
material out on two or three frames {displays) rather than
crowding it all on the screen at once.

4. A good program is self-prompting.
A self-prompting program is one in which the directions

to the operator appear on the display when they are
needed. A user faced with just a question mark on the
screen may be at a total loss in understanding what is
required. Tell the user what and/or how to make the
response - after all, he may have been interrupted by the
telephone and lost both his place and his train of thought.

5. A good program is well organized.
In this characteristic, reference is made to the

organization of the program statements and not to the
organization of the program contents that must be
assumed to be reasonable and logical. There is no gen­
erally accepted form of statement organization so the
following format is just one suggestion. The basic require­
ment is that statements be placed in logical groups.

A. Setup {initialization of string space, variables, etc.)
B. Subroutines
C. Main Program {separated into logical, distinguish-

able sections)
D. Data {before main program if used very often)
E. Title
F. Operating Instructions
G. Variables List

18 • VIC 20 Programmer's Notebook

You will note that the order of the items in this list is not the
order in which most peoplewrite them. In addition, it is evident
that it is not the order in which they are used in the program. If
this is confusing, read on - there are good reasons for the
sequence shown.

6. A good program has a liberal number of remark state­
ments.

All the program sections and all the unusual techniques
should be identified right in the program: Not only will
this help the user, but you will find it invaluable six months
later when you decide to make a modification or two. The
only excuse for inadequate REMark statements is that the
memory is not sufficiently large to hold them and the
working program, too (see documentation).

7. A good program has a variables Jist.
This is nothing more than a list of the variables and an

indication of how each is used in the program. The advan­
tages of having a variables list are the same as those for
having REMark statements. The actual list may be in the
program, or it may be in the accompanying docu­
mentation.

8. A good program is appropriately documented.
A program that is not documented is a literal pain to all

who deal with it. Such a program will not be successful in
the marketplace. Nor should it be given to friends because
of the frustration it engenders (unless, of course, you wish
to terminate the friendship). Having no documentation
will even be frustrating to you at some future time.

The word "documentation" does not imply any par­
ticular type or quantity. The operative word is
"appropriate." A very simple program requires very little
documentation and the appropriate types and amount of
documentation increase with program complexity.

Note, too, that documentation does not necessarily
mean hard copy. Some programs can be documented
quite adequately in the programs themselves. Liberal use
of REMark statements and a variables list tacked on the
end of a program may be entirely sufficient. Other
programs will require printed documentation.

[

[

[

[

[

[

[

[

[1

[

[

[

[

,
!
I_

') [

f [.
i

[

[

Programming Considerations • 19.

Very basically, documentation tells the user what is
required of him, what the program results will be, and
how and why the program does its job. Other things, such
as background information and references, may be
needed.

9. A good program uses memory efficiently.
10. A good program is written to operate as fast as the lan­

guage allows.

Efficient memory usage and speed of operation are discussed
in detail below.

There are, of course, additional characteristics ascribed to
"good" programs. Those listed previously are usually considered
the most important. As mentioned, each programmer arrives at
his or her own definition in one way or another. Each one will
modify his definition with experience and time. If you start off
with reasonable expectations for quality in your programs, the
results will be obvious to you and to others.

PROGRAMMING FOR MEMORY CONSERVATION

The program statements in this book are printed in such a way
as to make them as easy as possible to read and understand. They
will function as they are shown. You can use them in your
programs if you type them in exactly as they appear.

While they are written for maximum clarity, they are not
written for maximum efficiency in the use of available memory.
In order to conserve memory space, you may wish to take any or
all of the following actions after you understand the particular
technique presented. Further, you will find that the changes sug­
gested here will have the bonus effect of speeding up program
operation.

Remove the Spaces

Having spaces between words makes for easier reading but it
does use up lots of memory. For example, these two statements
result in the same program action:

250 IF E = 10 OR E = 15 OR E = 22 THEN 30
250 IFE = 100RE = 150RE = 22THEN30 .

20 • VIC 20 Programmer's Notebook

The second version requires 13 fewer bytes which are then
available for other use. In removing spaces, you must be careful
of spaces included between quotation marks. You cannot omit
these spaces without causing significant program changes.

Place Several Statements on One Line

Multiple-statement lines offer two advantages. First, they save
space because fewer line numbers (and internal Jinks and line
terminators) are used. Second, such statements are executed
faster than are the same statements placed on individual lines.

Multiple-statement lines are written by using colons to
separate the formerly individual lines as in this example:

145 FOR X = 1 TO 10
150 READE
155 PRINT E,
160 NEXT X

145 FOR X = 1 TO 10 : READ E : PRINT E, : NEXT X

Each separate statement you eliminate saves at least 5 bytes
that were used for line number, link, and terminator. Because
you do have to add the colon, the net saving may be only 4 bytes.
Four bytes does not seem like much but if you eliminate only 50
lines in a short program, you have saved 200 bytes (or more) -
enough for several additional lines. In this process, however,
remember that 88 characters (four lines on the screen) is the
maximum line length in the VIC 20.

In writing multiple-statement lines, you must be aware of
some special cases. When there is a statement referred to by a
GOSUB, GOTO, or THEN, you cannot place that statement in the
middle of a combined line. If that were done, there would be no
correct line number available for referencing.

IF ... THEN statements also require special treatment. For
example, consider these lines:

310 IF X = 5 THEN W = 0
315 RETURN

Note that line 315 will be executed regardless of the value of X.
However, if combined in the following manner:

310 IF X = 5 THEN W = 0: RETURN

['

[

[

[

[

.[

,[

I

l

[

t[

[

[

[

[

Programming Considerations • 21

the I;J:OII;NI will be executed only if X has a value of 5. Ob­
viously, this is not the same as lines 310 and 315. So, watch out
for all IF ... THEN statements to keep from altering the program
in unexpected ways.

Miscellaneous Savings
1. Most programmers begin writing with line number 10 or 100

and progress in increments of 10 in order to leave space for in­
serting additional lines later. This is good procedure when writ­
ing but it is wasteful of memory if lines are left numbered in that
manner.

Numbers in the text take up one memory location for each
digit. Therefore, if a line is numbered 10520 instead of 360, you
lose three bytes every time that line is referenced by a GOTO,
GOSUB, or THEN. That is one of the reasons, too, for placing the
subroutines near the beginning of the program. In any case, your
final version of the program should use the lowest possible line
numbers and an increment of one; i.e., 1, 2, 3, 4, et cetera.

Fortunately, your VIC 20 makes it easy to change line numbers.
All you have to do is to edit the line numbers - place the cursor
on the 0 of 120, for example, and DELete twice, then press 2 and
I;J:UIIjb'11. This changes the line number to 2.

Line 120 is still there as you can see by LISTing the program. In
other words, you have duplicated line 120 in the new line 2.
Therefore, the last step is to delete line 120.

2. You should make ample use of subroutines~ If there is an ac­
tion that is taken more than once in a program, make those
statement lines into a subroutine. The second time you use
GOSUB 9, for example, you have saved memory bytes- just how
many depends upon the length of the subroutine. Every time
you use GOSUB 9 after that, you save a number of bytes equal to
just less than that length.

3. The previous reasoning applies equally to the use of vari­
ables. If your program uses 36878 (the location for setting
speaker volume) several times, you will be ahead of the game by
making it equal to V% and using that name in place of the num­
ber.

4. There are two types of numerical variables: integer and
floating point. An integer variable (whole number) requires 2
bytes while a floating point variable requires 5 bytes of memory.
Obviously, you save with each variable you can define as an in-

'

22 • VIC 20 Programmer's Notebook

teger (A%) rather than as a floating point (A).
5. You know, of course, that

380 NEXT X
385 NEXT Y

can be replaced by 380 NEXT X: NEXT Y at a saving in memory.
They can be replaced also by

380 NEXT X, Y

In fact, the naming of a single variable after the word NEXT is
for the benefit of humans - it enables us to follow the flow of
the program statements. The computer, however, does not need
to be told except in very rare instances. Thus, you can save bytes
in any program by writing NEXT instead of NEXT Z. In your early
programming efforts, it is advisable to write the variable names
to keep from getting confused. When your program is "up and
running," you can go back and delete them.

6. Certainly, it should be clear that THEN GOTO and THEN GO­
SUB are redundant and waste both time and memory. Neither
word should follow THEN, in spite of the many times you will see
it written that way in programs.

7. There is yet another shortcut involving the IF ... ·THEN state­
ment. Suppose, for example, your program has a flag (variable
W) which may have a value of 0 or 1. When testing the flag, it is
not necessary to write

285 IF W = 1 THEN 60

The statement can be written as follows:

285 IF W THEN 60

Note that program execution transfers to line 60 if W equals any­
thing other than zero. It is a shorthand way of saying IF W <> 0
THEN

8. There are many instances when the usual semicolon may be
omitted from statements. Examine the following examples
which are written without one or more semicolons where you
normally find them:

90 PRINT "HELLO, "A$", WELCOME!" (2 omitted)
95 PRINT A$ CHR$ (99) B$ TAB (14) C$ D$ (4 omitted)

Be careful, however, of statements like the following:

125 PRINT J M

['

[

[

[

[

[

[

[

[

[

[

[,

r

[

[

L

[

r

[

[

[

[

Programming Considerations • 23

On encountering line 125, your VIC 20 will search for a variable
named "JM." If J and M are two variables, they must be
separated by a semicolon or by a comma or your program will
crash._

9. If your program makes use of one or more identical calcula­
tions several times, use the Define Function of your VIC 20. DEF
FN will save a few bytes beyond those saved by a subroutine to
perform the calculation.

10. When you have finished writing your program and de­
bugged it for the last time, go back and edit the BASIC com­
mands (keywords) in each line. Replace them with their abbrevia­
tions: ? for PRINT; R shift I for RIGHT$ - see Appendix B. Do not
list the program after converting to abbreviations or the VIC 20
will change them back to the full words. When all abbreviations
are made, immediately SAVE the program and you will save
memory bytes at the same time.

11. This memory saver has been held until last because it is in
direct opposition to what has been said about "good" program­
ming. When memory is at a premium, you may delete REMark
statements, of course. If you do have to take this extreme mea­
sure, be doubly sure that your documentation on paper is com­
plete.

Memory Summary

You will find few, if any, of the previous memory-saving tech­
niques mentioned in the Notes. Their presence would make it
more difficult for you to understand the how and why of the
program fragments.

In addition, there are instances in this book where the overall
efficiency of one Note can be improved by incorporating the
technique of another Note. In the interest of clarity, that was not
done because it is easier to grasp just one new concept at a time.
By all means, combine a Note with others when you can but only
after you thoroughly understand the Note as presented. That is
precisely how you improve your programming.

PROGRAMMING FOR SPEEDY OPERATION

As a writer of programs, you will become increasingly aware of
the speed at which they execute. The BASIC language works rela­
tively slowly but there are steps you can take to get as much

,,

24 • VIC 20 Programmer's Notebook

speed as possible from your program. Most of them are listed in
memory conservation because almost everything you do to save
memory will save time as well.

Any subroutines that are used frequently should be placed at
the beginnng of the·program. The reason for doing so is that
when the program must use one of them, the computer goes
back to the beginning and starts searching. Obviously, the
quicker it finds them, the quicker it can get on with program
execution. The same is true of DATA statements the first time
they are used and after each I;J41<•ml command, so it is often
advantageous to place them·near the beginning of the program,
also.

For some reason, programmers seem to fall into a natural writ­
ing pattern which places subroutines and DATA statements last
in the program. Because of the built-in ability of the VIC 20 to
move lines around, you can continue to write in this way. Just be
sure to edit the line numbers and move them to their proper
places before "tying up" the program - see Low Line Numbers
for the procedure.

You may be surprised to learn that variables often RUN faster
than do constants. That's right! In most cases, defining DA as 2.5
and using DA in a computation is faster than using 2..5. We agree
that this does not seem logical but take a few minutes to prove it
to yourself with this little program:

10 A = 10 : B = 0.55
20 Tl$ = "000000" REM - 6 zeros
30 FOR X = 1 TO 1000
40T=T+A-B
50 NEXT
60 PRINT "TIME = " Tl I 60
70 PRINTT

You will learn more about parts of this program later. For now,
be aware that line 20 resets the VIC 20 clock to zero and line 60
PRINTs the time in seconds. Of course, line 70 PRINTs the result of
the calculation in line 40.

The time PRINTed on the screen, then, is the number of
seconds it takes to do the arithmetic 1000 times. RUN the pro­
gram and make a note of the time given. Fast, isn't it?

Now, change line 40 to read

40 T = T + 10 - 0.55

['

[

[

[

[

[

[

[:

[

[

['

[

[

[

[:

r
r
r
r
[

r
I r
l
'l
,, [

r

r
1
l
L

Programming Considerations • 25

RUN the new program and compare this time with that of the
previous version.

We won't tell you the times - RUN the programs and see the
difference. The surprising thing is that the second versi~n takes
more than twice as long to RUN. It's almost unbelievable but be­
lieve the evidence and keep it in mind as you write yqur pro­
grams.

Speed Summary

These are the most important steps you can take to speed
execution of your programs (and save memory, too):

1. Remove spaces in lines.
2. Use low line numbers.
3. Use multiple-statement lines.
4. Place subroutines at/near the program start.
5. Never reference a REMark with GOTO, GOSUB, etc.
6. Restrict or delete REMark statements.

FLOWCHARTS

You will find flowcharts throughout this book. The function of
a flowchart is simply to provide a diagram of the actions taken by
the computer when executing a sequence of statements. There is
an old saying that one picture is worth a thousand words. The
same may be said of a diagram. A flowchart diagram will help
you form a mental picture of what is happening in the program.
The more complex the program, the more necessary the flow­
chart.

There are two types of activities in which flowcharts are
especially helpful. One of them is program writing, of course.
Programmers seem to fall into three categories. Almost all be­
ginners, but very few who are experienced, begin a new pro­
gram by typing statements into the computer. Some experienced
programmers begin by writing out a complete, detailed descrip­
tion of each step in the program - what it does, how it does it,
inputs and outputs. Others begin by drawing a flowchart to
simulate and illustrate program action.

Making a flowchart for a complex program can be an involved
and time-consuming process, even for the experienced. It is

26 • VIC 20 Programmer's Notebook

'

worth the effort, however, because it greatly simplifies the writ-
ing process. Most programmers can write a good program from a
good flowchart.

The real pay-off, though, comes in the form of time that is
saved in "debugging" (troubleshooting) the new program. A
program that was not well planned before it was written often
requires more time to debug (to get it running) than it took to
enter on the keyboard. Then, too, there is the extremely. frustrat­
ing experience of having a program finally run through, only to
discover that it refuses to do what you intended - it goes off on
some esoteric mission of its own!

The second activity in which a flowchart is especially helpful is
that of attempting to decipher a program written by someone
else. Digging into another's program is a fairly common task for
a programmer. It is a case of trying to find an answer to the ques­
tion, "Now, how did he do that?"

The cause of the inquiry may be nothing more than simple
curiosity but more often, it is a serious question. One frequent
cause is the desire to modify a program to better suit a particular
task (if you don't understand it, you can't change it). Another
reason is the one which applies to you and this book.

Flowcharts have been included here to provide another means
of understanding the subroutines and sequences of program
statements given in the Notes. If you don't understand the
Notes, you probably won't be able to use them in your own pro­
gramming. The flowchart serves as a supplement to the written
analysis of the program statements.

Even with a program listing and its analysis in front of you, it is
sometimes difficult to follow the sequential actions that the
computer will take. The flowchart will help you form a mental
picture of what is happening. The flowchart will not only help
you incorporate the technique or subroutine into your own
programs but it will also help you make modifications to suit
your needs. You should study the flowcharts in these Notes to
ensure your understanding of the execution of the statements.

Flowchart Fundamentals

Each symbol or shape used in a flowchart indicates a specific
type of program action. This is done to make it even easier to
comprehend the way in which the statements function.

[

[

[

[

[

[

[(

[:

[

[

c
[

[

l
[

r
r

' [

[

r
[

l
[

Programming Considerations • 27

Normally, several different types of symbols appear in a flow­
chart.

Because this book contains very few programs, it has been
possible to reduce the number of shapes or symbols to only two.
They and their meanings are:

A rectangular box (Fig. 1-1} indicates an unequivocal action
taken by the program. Usually there is a box for each statement
but, at times, one box may represent two or more statements.

A diamond-shaped box (Fig. 1-1} indicates a decision point in
the program. The diamond contains a question. When program
execution reaches this point (diamond}, it makes a choice of two
(or more} possible subsequent actions. That choice may be based
upon operator input or upon information in the memory which
provides an answer to the question.

In addition to these two shapes, you will find two other con­
ventions used in the flowcharts:

A series of three dots (Fig. 1-1} is used in place of some
program action that is not shown in the chart. In most cases, this
symbol is found at the beginning and end of the flowchart to
represent the remainder of the total program.

Arrows (Fig. 1-1} show the direction of program flow
(execution). The flowchart can be read only by moving from box
to box in the direction indicated by the arrows.

Flowchart Examples

To avoid possible confusion later, here are two examples using
these symbols and conventions. Fig. 1-1 represents a subroutine
in which the operator's answer is rejected unless it matches the
correct answer in A$. The first box shows the program GETting
the input (B$}. In the diamond, a decision is made as to whether
or not B$ = A$. If not, the execution goes back to the "GET B$"
box. If they are equal, the action goes to the RETURN box
(execution returns to the main program).

The ever-present FOR ... NEXT loop is illustrated in Fig. 1-2, a
portion of a flowchart in which a string (A$} is created to consist
of 10 randomly selected letters. First, X is set to equal1. Then, a
random letter is generated and concatenated (added) to A$. A
decision is made: is X equal to 10? If not, X is incremented
(increased} by 1 and the action goes back to generate another
random letter. Note that X remains equal to the number of

28 • VIC 20 Programmer's Notebook

NO

Fig. 1-1. Example flowchart fragment.

X = X + 1

Fig. 1-2. Flowchart example of a FOR ... NEXT loop.

letters. When X does equal 10, A$ is 10 letters long and
execution leaves the loop to continue in the statements that
follow.

If you keep these explanations in mind, there is nothing to
prevent you from understanding the action shown in any
flowchart in this book. Remember to read the program listing,

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

L
[

[

[

L
[

L
[

[

Programming Considerations • 29

the analysis, and the flowchart together. Each of them is about
the same subject and they supplement each other.

Additional important programming considerations will be dis­
cussed in Chapter 3.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

['

r
[

[

[

[.

[:

L

CHAPTER 2

Notes: Input Controls

There are many reasons for wishing to control the permissible
input of the program user. We will take a look at some of them
and show you ways to do so. Without some additional program­
ming, the VIC 20 built-in functions do not allow much latitude.

When a response is desired from the user of your program, it is
a simple matter, indeed, to insert the statement:

60 INPUT "HOW MANY "; A

The operator may type and enter up to about 250 characters for
the program to use.

Another response mechanism is:

80 PRINT "HOW MANY ?";
90 GET A$

In this case, the operator is limited to a one-character answer.
The operator won't even get a chance to type one character
because of the way the GET function works. Unless GET A$ is
followed by

95 IF A$ = II II THEN 90

31

32 • VIC 20 Programmer's Notebook

the user will have no real opportunity to hit a key. The program
GETs and finding nothing, moves on to the next statement. Line
95 forces it to wait until a key is actually pressed.

Even so, the operator may not have a chance to answer if, for
example, he has been playing with the keyboard before the
question is asked. The GET statement should be preceded by

85 POKE 198, 0

in order to be sure that no "old" keypress is lurking around in
the VIC 20. If there is one, the GET will take it as the operator
answer and that could give some confusing results. Line 85
clears the l<eyboard buffer and readies it for new typing.

The preceding methods do allow for user input of data but
they are rather restrictive. INPUT requires that the I;HUII;h11
key be pressed and that may be disadvantageous in some
situations. Further, use of the variable A will not allow the entry
of alphabetic answers. Using A$ will allow alpha entries but will
accept numerics also. To top it all off, INPUT will not accept
certain punctuation and symbols and the ones that it rejects
depend upon whether the variable is numeric or string.

GET, on the other hand, requires no ljHUII;hll key and it will
accept anything, even graphics, if a string variable is used but it
will accept only one character. Further, A$ will accept both alpha
and numeric characters and, even worse, the numeric A will end
the program with an error message if the operator should press
an alpha key. Obviously, both INPUT and GET can be used in only
the simplest programs as shown so far.

You will have other reasons for wishing to control user input.
Suppose, for example, that you want to limit the amount of time
the operator has to answer the question. You may wish to perm it
only the correct answer. How about refusing to accept the
repetition of an earlier input?

Techniques for these and other controls are given in the Notes
that follow. Many of the techniques given in this chapter can be
used with either GET or INPUT. You should give special attention
to the collected variations in the last section of this chapter.

MULTICHARACTER RESPONSE WITH GET

[

[

[

[

[

[

[,

[J

[

[

[

[:

c:
Because GET will accept punctuation which INPUT rejects, it is l

often desirable to use the former for operator input. A problem '

[

l :

r:
~r

I [

L

Notes: Input Controls • 33

that must be overcome, however, is the fact that GET will accept
only one character each time it is called. This subroutine will
permit the program to GET more than one character in a
response.

Listing

.
6108$ = ,,
620 POKE 198, 0
630 GET A$
640 IF A$ = "" THEN 630
650 IF ASC (A$) = 13 THEN RETURN
6608$ = 8$ +A$
670 GOTO 630

Fig. 2-1 shows a flowchart of multicharacter response with
GET.

Analysis

610 sets the contents of variable 8$ to null.
620 clears the keyboard buffer.
630 assigns the character in the keyboard buffer to A$.
640 transfers execution back to 630 if the buffer contained no

character.
650 transfers back to the main program if I;J:IIII;WI is pressed.
660 concatenates A$ to 8$.
670 transfers back to 630 for another character.

Use
This subroutine permits you to make use of the advantages of

the GET statement when seeking user input. For example, the
program can now accept answers containing commas. The
operator response is returned to the main program in the
variable B$.

Variations

Often, when numerical responses are required, they are to be
used in a numerical rather than a string variable. This
accommodation can be made in two ways. The first is to convert
B$ to a numeric variable afteri;J:tllm~l from the subroutine. If

34 • VIC 20 Programmer's Notebook

RETURN

Fig. 2-1. Flowchart of multicharacter response with GET.

this is to be done several times, however, save memory by
making the conversion in the subroutine:

650 IF ASC (A$) = 13 THEN B = VAL (B$) : RETURN

Now, after the response is made, the main program looks to B
for numerical answers as well as to B$ for string answers.

If your application requires that the response begin with an
alpha character, you could insert these lines:

650 IF ASC (A$) = 13 THEN 680
680 IF VAL (B$) < 1 THEN RETURN
690 PRINT "IMPROPER INPUT, TRY AGAIN"
700 GOTO 610

To accept only those responses that begin with a digit, change
the< 1 to> 0.

[

[

[

[

[

[I

[

[

[

[

[

[.

[

[I

II
[~

I :

f !

['

[

r:
I [.

[

[

I r:
I ~

Notes: Input Controls • 35

EVALUATING VALUES WITH INPUT

There are many times when the characteristics of INPUT are
perfectly suitable for program use. In such cases, INPUT should
be used as it will save some memory over the use of GET. When it
is desirable, responses via the INPUT statement can be limited by
type or length as shown below. ·

FORMATTED INPUT

The formatted input subroutine is used to pre-structure
(format) the "answer blank" into which the user's response will
be displayed. Even more than that, you may specify almost any
characteristic of acceptable responses. This subroutine can be
used in any program that requires operator input and it is
unusually versatile. Formatted input will add variety, interest,
and exactness to your programs.

Though the subroutine appears long in this easy-reading form,
it can be compressed considerably through the use of multiple­
statement lines. We'll begin with a simple version and add
features as needed.

Listing

10 UA = 209
12 U$ = II 1mJI1111 (10 times)"

190 PRINT "YOUR ANSWER ?";
200 UL = 5 : GOSUB 840
210 -evaluation of numeric (B) or string (B$) answer-

840 B$ = ,,,
850 U1 = PEEK (UA) : U2 = PEEK (UA + 1) : U3 = PEEK (UA + 2)
860 UT = 11 - UL
870 PRINT , 11!WJ!-1!1 , MID$ <us, un , 1!iii1Jii1 II
880 POKE 198, 0
890 POKE UA, U1: POKE UA + 1, U2: POKE UA + 2, U3
900 GET A$
910 IF A$ = '11

' THEN 900
920 IF ASC (A$) = 13 THEN 970

36 • VIC 20 Programmer's Notebook

930 PRINT A$;
9408$ = B$ +A$
950 IF LEN (B$) = UL THEN 970
960 GOTO 900
970 B = VAL (B$)
980 PRINT CHR$ (32)
990 RETURN

See Fig. 2-2 for a flowchart for formatted input.

Analysis

10 sets the first address of cursor position locator.
12 sets the form of the answer blank.

190 asks for the user input (the trailing semicolon causes the answer
blank to be displayed right after the question).

200 sets the length of the answer and calls subroutine.
210 program continues.

840 sets the answer variable to null.
850 determines the location of the cursor.
860 determines how much of the answer blank to display.
870 displays the answer blank in reverse color.
880 clears the keyboard buffer.
890 places the cursor back at the beginning of the blank.
900 takes a character from the keyboard buffer.
910 transfers back to 900 if no key was pressed.
920 transfers to 970 if the key wasi;):UIJ;NI.
930 PRINTs the character (in A$) in the blank.
940 concatenates the character to 8$.
950 transfers to 970 if the length of the answer (8$) is equal to that

specified before the subroutine call (this is an automatic RETURN) .
. 960 transfers back to 900 to get another character.

· ~970 sets variable 8 to the numerical equivalent of 8$.
980 PRINTs a space over (erases) the end-of-blank marker.
990 RETURNS to the main program.

Use

This 1ormatted input subroutine can be used in any program
requiring operator input. It displays an answer blank with a
length· _as specified before it is called. The operator answer is
accep;ted when its length is equal to the length of the blank. A
shorter answer is accepted if the I;J:UII;h11 key is pressed. The

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r ,

r

l'

r

~:

[

r

l ! i

Notes: Input Controls • 37

SET CURSOR PEEK ADDRESS
SET ANSWER FORMAT . .

y
DISPLAY QUESTION

SET ANSWER LENGTH
CALL SUBROUTINE

CLEAR ANSWER VARIABLE
LOCATE CURSOR POSITION
DISPLAY ANSWER FORMAT
CLEAR KEYBOARD BUFFER

REPOSITION CURSOR

ASSIGN A$ FROM BUFFER

Fig. 2-2. Flowchart for formatted input.

38 • VIC 20 Programmer's Notebook

response is in numeric variable B and in string variable B$. Of
course, B will equal zero if the first character is a letter.

If the acceptable length of the answer is the same for consec­
utive questions, it need not be specified each time. Variable UL
retains the last value given so you need not set it again unless it is
to be changed.

As shown, the subroutine will accept any keyboard entry but
methods of restricting the characters it will accept are given as
follows:

Variations

1. You may simplify the subroutine a bit by eliminating the
automatic RETURN feature. If you delete line 920, pressing the
I;J:Iilii;NI key will count as a response character. To ignore it
altogether, change the 970 in line 920 to 900.

2. The form of the answer blank can be changed by replacing
the 10!I_.,;IIj1U graphic characters in line 12. You may want to
try such characters as -, ••U;J! g, or f•Wijl liD· If the
character is changed, the corresponding modifications should be
made to any blinking cursor additions (see the following).

3. The maximum length of any answer in the program is
determined by the length of the string in U$ (line 12) minus one
(for the end marker). It may be changed by shortening or
lengthening that string. If this is done, the number (11) in line
860 must equal the total length of U$.

4. The answer end marker(<) can be removed from line 12. If
you do this, change the 11 in line 860 to 10.

5. to move the position of the answer blank one space to the
right, make this change in line 850:

850 ••• : U3 = PEEK (UA + 2) + 1

[

[

[

[

[

[

[

[

[

[

[

6. il the·. answer blank (format) is not displayed, responding [

will be more difficult for the user. This can be done by deleting
lines 12, 860, and 870. All of the other advantages of the sub- [
routine are retained.

7. The 1jperator wi II be less I i kely to lose his or her place on the
screen if the input point is made to flash. A side benefit of the [~

feature is the added attractiveness of the display. These changes
to the original subroutine will create a blinking cursor:

[

l

Notes: Input Controls • 39

11 ux = 122
892 PRINT CHR$ (UX);
894 FOR Z = 1 TO 30 : NEXT
910 IF A$ = '"' THEN GOSU8 1000 : GOTO 892
925 GOSU8 1000
960 GOTO 892
1000 POKE UA + 2, PEEK (UA + 2) - 1
1010 IF UX = 122 THEN UX = 32 : RETURN
1020 IF UX = 32 THEN UX = 122
1030 RETURN

The subroutine at lines 1000 through 1030 serves two functions.
First, the cursor is moved to the left by one space to keep it from
marching across the screen. Then, the value in variable UX is
switched between 32 and 122 in order to blink the cursor.

8. The rate of flashing can be changed by replacing the 30 in
the delay loop (line 894) with another number.

9. If you wish to provide additional contrast to the input point,
you can change the flashing character. See how you like
replacing 122 with 175 in lines 11, 1010, and 1020.

10. A change in color will give further contrast. Assuming the
printing is in green, this will change the cursor to red:

892 PRINT" UliiJ-11" CHR$ (UX) "UlilJD ";
11. The entire answer may be displayed in the contrasting color

by removing the 11 lljj;JI-IlJ II from 892 and inserting it
between the words PRINT and CHR$ in line 980. It may be made a
third color by inserting 11 lljmlll (and your color choice) after
PRINT in line 930.

12. As presented to this point, the subroutine will not permit
the correction of any typing errors. To enable the DEL function,
insert this line in the blinking cursor variation:

915 IF ASC (A$) = 20 THEN 8$ = LEFT$ (8$, LEN (8$) - 1): GOSU8
1000: GOSU8 1000: GOTO 892

13. There will be times when you do not want the entered
characters displayed. That can be accomplished by deleting line
930 and line 925, if the latter is used.

14. There is no limit to the variations on this formatted input
subroutine. As one last example, try these lines in the blinking
cursor if you would like to add sound:

13 POKE 36878, 15
893 POKE 36875, 240
895 POKE 36875, 0

40 • VIC 20 Programmer's Notebook

DEFAULT INPUTS

In your programs, there will be occasions when you wish a
response to have a predetermined value if the operator enters
nothing. Often you will see statements like this:

50 INPUT "YOUR ANSWER"; A$
60 IF A$ = "" THEN A$ = "NONE"

Of course, NONE will be the default answer but this technique
wastes memory. A better approach is:

80 A$ = "NONE"
90 INPUT "YOUR ANSWER "; A$

Lines 80 ad 90 use less memory, yet they act exactly as do lines 50
and 60. Of course, one multistatement line

80 A$ = "NONE" : INPUT YOUR ANSWER "; A$

is even more economical, as in all the Notes.
In many of the forms, GET routines also keep a preset response

if only I;HUII;NI is pressed. Whether or not a default answer
will be carried through depends upon the structure of the
routine. If it does not do so initially, usually it can be modified,
otherwise you may have to use the technique in lines 50 and 60.

NO-ERROR RESPONSE (WORD)

This subroutine will prevent the user from entering an incor­
rect response. Only a preset answer will be accepted. Acceptance
or rejection is based on the entire word(s). For letter-by-letter
evaluation, see the following Note. This technique can be used
to advantage in many types of programs.

Listing

40 A$ = "PANAMA"
50 GOSUB 700

700 INPUT "YOUR ANSWER"; B$

[

[

[

[

[

[

[

[

[

[

[

[

[

L
['

(:

(.

[i

l

t:

I , I 'l··.·

r:

Notes: Input Controls • 41

710 IF A$ <> B$ THEN PRINT "SORRY, THAT'S NOT RIGHT. TRY
AGAIN " : GOTO 700

720 RETURN

See Fig. 2-3 for a flowchart for no-error word response.

Analysis

40 sets the correct response.
50 call5 the subroutine.

700 asks for the response.
710 PRINTs a message if the response and the preset answer are not

the same, and transfers back to 700 for another response.
720 transfers back to the main program only when the answer is

correct.

Use

In certain types of tutorial situations, it is very desirable to dis­
allow an incorrect response. It may not be good practice to
permit the learner to "get by with" entering BRAZIL when the
correct response is PANAMA- negative learning could result. Of
course, the operator could be corrected immediately, but why
not simply refuse to accept the wrong answer? Refusing would
prevent guessing, especially if a limit were set on time or number
of trials.

As another example of its use, there is an instance in which you
must reject an incorrect response. That is when you ask for a
codeword or password. Of course, you may wish to "hide" the
correct response in the program per instructions in another
chapter.

Variations

Useful variations include limiting the number of trials per­
mitted. See other Notes in this chapter for details on this and
other modifications.

NO-ERROR RESPONSE (CHARACTER)

This subroutine evaluates and accepts or rejects a user response
on a character-by-character basis. Otherwise, it is similar in
action to the subroutine in the previous Note.

42 • VIC 20 Programmer's Notebook

Fig. 2-3. Flowchart for no-error word response.

Listing
30 A$ = "CODEWORD"
40 PRINT "ANSWER?";
50 GOSUB 700

700 Z=O
710 B$ = ""
720 POKE 198, 0
730 GET T$
740 IF T$ = " " THEN 730
750 IF ASC (T$) = 13 THEN RETURN
760 z = z + 1
770 IF T$ <> MID$ (A$, Z, 1) THEN PRINT "WRONG" : RETURN
7808$ = B$ + T$
790 GOTO 720

Fig. 2-4 shows a flowchart for no-error character response.

Analysis

30 sets the correct response.
40 poses the question.

['

[

[t

[)

[I

[/.

[[

[~

[:

['
I

I'

r:
l :

I r:

[:

SO calls the subroutine.

700 sets the counter to zero.
710 sets the answer variable to null.
720 clears the keyboard buffer.
730 gets a character from the buffer.

Notes: Input Controls • 43

740 if the buffer was clear, transfers back to 730.
7SO if the character is RETURN, transfers to the main program.
760 increments the counter.
770 checks the current character againstthe one expected and, if not

the same, PRINTs a message and RETURNs to the main program.
780 concatenates the character to answer variable B$.
790 transfers back for the next character.

Use
This technique may be used in the same manner as the

preceding Note. The major difference is that the response is

checked after each character is entered. Depending upon the

program, this may make it less "secure" than the earlier No­

Error Response subroutine.

Variations

Time and/or trial limits can be added if desired. See the appro­

priate Notes in this chapter for details.

MULTIPLE-TRIAL RESPONSE

There are many instances when it is desirable to permit more

than one attempt to respond to a question or direction. This sub­

routine provides for multiple trials.

Listing

30 A$ = "PASSWORD"
40 TR = 3 : REM (number of trials permitted)
SO GOSUB 800

800C=0
810 c = c + 1
820 IF C = TR + 1 THEN PRINT "THAT'S ENOUGH GUESSING!"

RETURN

44 • VIC 20 Programmer's Notebook

830 INPUT "YOUR ANSWER "; B$
840 IF B$ <> A$ THEN PRINT "INCORRECT - TRY AGAIN"

GOTO 810
850 RETURN

Analysis

30 sets the response equal to A$.
40 sets the number of permitted trials.
50 calls the subroutine.
800 clears the counter.
810 increments the counter by 1.
820 PRINTs a message and RETURNs to the main program if all the

permitted trials have been taken.
830 assigns answer to variable B$.
840 if the answer is not correct, transfers back for another trial.
850 transfers back to the main program.

Use

In tutorial type programs, especially, it is often desirable to
allow more than one try at making a correct response. The
learner may not become as discouraged if he or she can get the
answer on the second (or fifth!) attempt. In other types of pro­
grams, this technique can allow for typing errors on the first
entry.

Variations

1. You can change the number of trials by putting another
number in place of 3 in line 40.

2. The number of permitted trials need not be specified for a
question if it is not different from the number permitted for the
previous question.

3. In many programs, a score is determined by the number of
correct answers. When only one answer try is permitted, there is
no problem determining the score. When more than one try is
allowed, you will want to allow less score for a correct answer on
the second or third (or sixth) trial. These changes to the
preceding program will compute the score:

35 VA = 10: REM (point value of the question)
55 SCORE = INT (TR I C * (VA I TR) + .5)

Variable VA maintains its value until it is changed. The score
formula in line 55 decreases the point value for the question with
each unsuccessful try. It may be modified to suit your needs.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:

[:

[

t l '

) r

[:

r:

[

['

Notes: Input Controls • 45

TIME-LIMITED RESPONSE

This subroutine will allow you to limit the amount of time a
user has to input an answer or command. If the response time is
too slow in a game, you may want the player to lose a turn or
lose points. When a student exceeds a given time, your program
can score the question wrong or force him or her to review some
material. This time-limited technique has many uses.

Listing

40 TM = 20 : REM (equals about 20 seconds)
45 PRINT "YOUR ANSWER?";
50 GOSUB 800

800 Z = 0: B$ =
810 POKE 198, 0
820 z = z + 1
830 GET A$
840 IF Z = TM * 75 THEN PRINT "TIME'S UP!" : RETURN
850 IF A$ = II II THEN 820
860 IF ASC (A$) = 13 THEN RETURN
870 PRINT A$;
8808$ = B$ +A$
890 GOTO 820

See Fig. 2-5 for the flowchart for time-limited response.

Analysis

40 sets the maximum line (1 unit = about 1 second).
45 presents the question.
50 calls the subroutine.

800 sets the timer to zero and sets B$ to null.
810 clears the keyboard buffer.
820 increments the timer.
830 GETS a character from the buffer.
840 checks the time and, if expired, PRINTs a message and transfers

back to the main program.
850 transfers back to increment the timer and checks the buffer if the

character was null.

46 • VIC 20 Programmer's Notebook

860 if the character is RETURN, transfers back to the main program.
870 PRINTs the character.
880 concatenates the character to 8$.
890 transfers back to increment the timer and checks the buffer.

Use

[

[

[

This time-limited subroutine is well suited to any application [
requiring responses during a specified interval. Games, training
programs, and tests of memory power, observation, and speed- [_-
of-reaction often fall within this category.

ASSIGN CORRECT ANSWER [
DISPLAY QUESTION
CALL SUBROUTINE .

[

[

[

[

[

[

[

Fig. 2-4. Flowchart for no-error character response. [

[

r:
r,

[:

[

[

r:

) r
[!

[

[,

L
[

Notes: Input Controls • 47

Variations

1. As the subroutine is given, each unit in the TM variable is
worth approximately 1 second. This is determined by the 75 in
line 840. Of course, that number can be changed to make a TM
unit worth 10 seconds, a minute, or whatever desired.

2. You can take some special action if the user does not respond
within a given time. This statement admonishes him or her to get
busy!

835 IF Z = tNT (TM /2)AND LEN (B$) = ""THEN PRINT "WELL, MAKE
A GUESS!": GOTO 820

In this case, the (TM I 2) displays the message when one-half the
time has lapsed provided no acceptable key has been pressed.
The denominator can be changed to provide the warning at any
desired time.

3. Answers can be automatically entered by making these
changes:

42 N = 8 : REM (number of characters in answer)
805 p = 0
875 p = p + 1
885 IF P = N THEN RETURN

Variable N is the number of characters (including spaces) in the
correct answer. Variable P counts the number of entered
characters and when it is equal to N, an automatic transfer is
made back to the main program.

4. If only certain characters are acceptable, you may wish to
build in a penalty for pressing an unacceptable key. To do this,
the previous statement could be modified by:

840 IF Z = > TM * 75 THEN PRINT "TIME'S UP!" : RETURN
865 IF ASC (A$) < 65 OR ASC (A$) > 90 THEN Z = Z + tNT (TM /10) :

GOTO 820

Here, the user is penalized one-tenth of the permissible time for
each wrong key.

5. More accurate timing can be achieved through the use of the
timer built into the VIC 20. To use that timer, make the following
changes to the original subroutine.

800 Tl$ = "000000": REM:- 6 ZEROS
820 (delete)
840 IF tNT (TI/ 60) = > TM THEN PRINT "TIME'S UP!" : RETURN

48 • VIC 20 Programmer's Notebook

Fig. 2-5. Flowchart for time-limited response.

The preset value of TM is in units of 1 second. Line 800 resets
the clock/timer to zero. Resetting is quicker than would be
reading the timer in 800 and in 840 and computing the dif­
ference in the two readings for comparison with TM. Of course,
if this modification to the subroutine is used as shown, the
resetting of the clock/timer may cause a problem with some
other timing function (if any) in the program.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
{,

[,

r:

[

[,

[:

[,

Notes: Input Controls • 49

TIME-WEIGHTED RESPONSE

Just as the number of trials can be used to weight the score for
a response, the amount of time can also be used for the same
purpose. This subroutine will allow your program to change the
score for an answer according to the user's speed.

Listing

40 PRINT "YOUR ANSWER ?";
50 GOSUB 800
60 (score routine using TS)

800 Tl$ = "000000" : REM- 6 ZEROS
810 POKE 198, 0 : B$ = II II

820 GET A$
830 TS = INT (TI I 600 + .5)
840 IF A$ = II II THEN 820
850 IF ASC (A$) = 13 THEN RETURN
860 B$ = B$ + A$
870 GOTO 820

See Fig. 2-6 for the flowchart for time-weighted response.

Analysis

40 poses the question.
50 calls the subroutine.
60 scores the answer using the value of TS as a weighting factor.

800 resets the clock/timer.
810 clears the keyboard buffer and sets B$ equal to null.
820 gets a character from the buffer.
830 sets variable TS equal to the time interval.
840 transfers back to 820 if the character is null.
850 transfers to the main program if the character is RETURN.
860 concatenates the character to B$.
870 transfers to 820 for another character.

Use

The amount of time taken by the operator to make his or her
response is returned to the main program in the variable TS. The
TS value can be used to give less credit for slower responses. This

(,

50 • VIC 20 Programmer's Notebook

CLEAR KEYBOARD BUFFER

RETURN

Fig. 2-6. Flowchart of time-weighted response.

subroutine can be quite valuable in such programs as games,
tutorials, and reaction speed tests.

Variations

1. As presented previously, the subroutine counts in units of 10
seconds. The value of a unit may be set to any convenient
number. For example, changing the 600 in line 830 to 60 will
cause the units to be counted in seconds. These figures are based
on the fact that each Tl unit of the internal clock/timer has a
value of one-sixtieth of a second.

2. There are many ways in which you can make use of the time
in TS. The operator can be rewarded for faster time and_ penal­
ized for a slower time, as in this example:

30 TU = 3 : REM-- "normal" time
35 VA= 8: REM-- point value of question

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[,

[:

['

[

r~

r~

L

[

Notes: Input Controls • 51

60 IF TS < 1 THEN TS = 1
70 IF B$ = (answer) THEN SCORE = INT (TU I TS * TU + .5)

Of course, the statements in lines 60 and 70 determine the effect
on the score of the time taken. As a further example, if you
change line 60 to

60 IF TS < 3 THEN TS = 3

slower times will be penalized but faster times will not be
rewarded.

A completely different approach to weighting is illustrated by
these changes to the preceding statements:

60 IF TS < VA I 2 THEN T = 4
65 IF TS >VA + VA 12 THEN T = -4
70 IF B$ = (answer) THEN SCORE = VA + T

Now, if the operator uses less than half of the normal time, he or
she is rewarded with an extra 4 points. If he or she uses 50%
more than the normal time, he or she is penalized by 4 points. Of
course, you can change the times and points to suit your needs.

3. You can have I;J=:UII;NI to the main program executed
automatically at the end of some specified time. These lines will
do so:

30 TU = 3 : REM- maximum time
835 IF TS = > TU THEN PRINT "TIME'S UP!" : RETURN

REVERSE RESPONSE

The reversal of entered characters can be advantageous in a
number of ways. One obvious application is in the entry of a
password for program or data access. In a tutorial for young
children, the direction might be to enter a word "backwards." If
the program is a game or puzzle, reverse input can be used to
introduce additional challenge or even confusion on the part of
the user.

With INPUT

In subroutines using INPUT, these statements should be placed
immediately before I;JjiiJ;NI:

nn T$ = ""
nn FOR X = LEN (B$) TO 1 STEP - 1

1\

52 • VIC 20 Programmer's Notebook

nn T$ = T$ + MID$ (B$, X, 1)
nn NEXT
nn B$ = T$

With GET

GET subroutines can reverse the response as shown previously
or much simpler by swapping the variables on the right of the
concatenation statement:

instead of B$ = B$ + T$
use B$ = T$ + B$

You can further scramble responses by setting up a counter and
inserting:

IF Z = > 4 THEN B$ = T$ + B$: GOTO (GET-line)
B$ = B$ + T$: GOTO (GET-line)

COLLECTED VARIATIONS ON THE PRECEDING NOTES

Many variations on response routines are equally applicable to
all or most others. In order to avoid duplication, a number of
them have been collected here. Recheck this collection when
using any of the Notes in this chapter. The following statements
assume that an input character is in T$ and that B$ is the variable
in which the response is returned.

1. It would be wasteful of memory space to have one response
routine for strings and another for numbers. Because string
variables can hold both alpha and numeric characters, response
routines usually use strings. To accommodate both needs, the
following line is commonly included in the routine:

xx B = VAL (B$)

If this statement is executed immediately before the
I;Jjllml11, the main program can look to B$ for a string
response and/or to B for a numeric response. This technique is
useful in any response routine.

2. GET routines, especially, can incorporate response "filters"
very easily. A filter consists of several statements that reject some
characters and pass others through. In the routine, the filter is
normally positioned immediately before the input character is
concatenated to the answer variable.

The first statement assigns the ASCII code of the input
character:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

['

[

[

r
['

r
[

[

[

[

[

[

Notes: Input Controls • 53

XX T = ASC (T$)

This is followed by a line (or more) in which the actual filtering is
done. This line passes only digits:

yy IF T < 48 OR T > 57 THEN (GS-# of GET line)

Referring to the ASCII table in Appendix G, you will see that an
ASCII value less than 0 or more than 9 will be rejected; i.e., it is
ignored because the execution goes back to get another char­
acter before the current one is used. This statement rejects every­
thing except the letters A through Z:

yy IF T < 65 OR T > 90 THEN (GS)

Of course, filter statements can be used in various com­
binations. These pass only digits and letters:

yy IF T < 48 OR T > 90 THEN (GS)
zz IF T > 57 OR T < 65 THEN (GS)

Using the ASCII table, you can devise statements to filter any
character or characters.

3. There will be times when you want to give a hint and another
try if an answer is wrong. This can be done as shown in this
example:

xx IF B$ = "CHICAGO" OR B$ = "DALLAS" THEN PRINT
"CLOSE-TRY AGAIN" : GOTO (beginning of response routine)

4. You can cause special actions if certain characters are entered.
In the GET routine, this statement ENDs the program abruptly if
the pressed key is anything other than a letter:

xx IF ASC (T$) < 65 OR ASC (T$) > 90 THEN END

This line can be used in either GET or INPUT routines:

xx IF B$ = "JONES" THEN END

5. This line will display characters as they are entered in a GET
routine:

xx PRINT A$;

6. Response routines can be made to lwlllm~l automatically
under specified conditions as in these examples:

54 • VIC 20 Programmer's Notebook

xx IF LEN (B$) = > 8 THEN RETURN
xx IF B$ = "YES" THEN RETURN
xx IF ASC (T$) > 57 THEN RETURN

7. Color and sound can be used for many effects. Examples are
given in the Note on Formatted Input.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r

f'

r
[

I [

['

r '
•. I

CHAPTER 3

Further Programming
Considerations

MEMORY CHANGES

If you go beyond the simplest type of programming, un­
doubtedly you will discover that you must add memory to the
basic VIC 20 that you purchased. There is, after all, just so much
you can do in the originally available 3583 bytes of free memory
regardless of how well you conserve memory in programming.
That 3583 bytes will hold only 3583 characters (including spaces
and "overhead," such as line numbers, links, and end markers
which are discussed later). Why, with no overhead counted, this
short paragraph has over 500 characters!

Further, it is a very rare program, indeed, in which you can
write into all the available memory. Almost all programs require
at least some data manipulation and there are those that require
more space for that purpose than is used for the program state­
ments, themselves. Don't forget that there must be free memory
for data manipulation such as user-input responses, error
trapping, counters for loops, concatenating and parsing strings,
mathematical operations, and a host of others .

55

56 • VIC 20 Programmer's Notebook

The point is that the original 3583 free bytes will only satisfy
your needs for so long. When your programs begin to bump into
that dreaded "OUT OF MEMORY" message, it is past time to add
more usable memory (RAM). At that time, you are certainly in
good company - every beginning programmer soon runs out of
the minimal memory that comes in most computers.

You are fortunate in that the VIC 20 makes it quite easy to add
RAM (free memory). All you have to do is to plug it into the back
of the machine. Currently available memory modules are 3K, 8K,
and 16K in size. (Each "K" is equal to 1024 bytes so "3K" is 3072
bytes, though it is referred to as 3 "thousand.")

Adding memqry is easy - but it can cause you programming
problems if you are not aware of some of the resulting changes
in your system. It is NOT simply a matter of adding more
available bytes to the end of what you had.

Depending upon just how much memory is added, the
locations of certain things in the VIC 20 shift to different places.
For example, when 3K of RAM is added, the beginning of BASIC
programs shifts from memory location 4069 to 1024 (and other
additions will shift it to 4608). Other significant changes include
the locations of the blocks of memory that control the video
characters and the video color.

Shifts such as these will cause no discernible change in the
functioning of many programs. Others which refer to these lo­
cations directly (those which use commands such as SYS, PEEK,
and POKE), will"crash" or "bomb" (cease to function) until they
are modified to accommodate the changes.

It is important for you to know that such changes do take place
and just what they are so that you can write/modify your pro­
grams accordingly. Chapter 5 contains that information as well
as suggestions for making your programs self-adjustable for
machine memory size.

ERROR TRAPPING

Few things, if any, are more frustrating to someone running a
program than to have it abruptly quit for no apparent reason. A
programmer can earn a lot of enemies that way! In an attempt to
win friends and influence people, a programmer must do all he
or she can to anticipate confusion and even beginners' mistakes
on the part of program users. Further, he or she must build into

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

[

[

[

[

[

L

Further Programming Considerations • 57

the program every device he or she can to prevent both
accidental and purposeful errors from interfering with its execu­
tion.

You cannot prevent an operator of your program from making
an error, of course. The operator may enter an alpha character
when a numerical character is required. The operator may enter
figures that will cause your program to try to divide by zero. The
operator may enter a "7" when the largest number in your
menu is "5".

The ways a user can make mistakes have never been num­
bered. There probably never will be such a count because oper­
ators are still finding new ways to cause programs to crash or
bomb.

One of your big tasks in writing your program is to
predict/discover as many potential operator errors as possible. At
least, you must find the most likely ones. One way to be sure that
you have not overlooked any major possibilities for error is to let
a few people run the program while you observe. Usually, the
less they know about computers, the better because such folk
make the most mistakes.

Rejecting Errors

An "error trap" is nothing more than a procedure you build
into the program to capture user mistakes and render them
harmless. Your error trap either throws out the mistake or
changes it to something that will not ruin your good program.
Look at these lines:

50 INPUT"WHAT LEVEL OF DIFFICULTY DO YOU WANT (1-3)";8
60 IF B < 1 OR B > 3 THEN 50

Line 50 asks the operator to enter a difficulty level of 1, 2, or 3. If
the operator enters some other number, it may cause unpre­
dictable results or even crash your program. You can bet on the
fact that users will input numbers outside the acceptable range
by accident or even on purpose, so you trap their errors.

58 • VIC 20 Programmer's Notebook

In line 60, any number less than 1 or greater than 3 is rejected.
It will cause the program execution to go back to line 50 and
repeat the question. The user simply cannot get past line 60 until
he or she enters a number in the specified range. If the operator
enters a decimal number, 1.3 for example, it will be treated
usually as the integer portion (a 1 in this case). Of course, an
acceptable entry will cause execution to "fall through" line 60
and continue with subsequent statements. You have trapped the
user's potential errors.

If, in the trap shown previously, you want to make sure that
the answer is an integer, you may do so in two ways. First, you
could use B% as the variable instead of B. A second method
would be to insert "this line in the trap:

55 B = INT (B)

Here is an example of an error trap that is used frequently:

120 INPUT "MILES YOU COMMUTE TO SCHOOL OR WORK (ONE WAY)
"; D$

130 D = ASC (LEFT$ (D$, 1)) : IF D < 48 OR D > 57 THEN 120
140 F = VAL (D$)

Operators often will enter words when you have expected
numbers. Line 120 accepts the input answer as a string so that
the user will not get the cryptic"? REDO FROM START" message
if he does input alpha characters. Line 130 then determines the
ASCII value of the first characters of D$ and checks to see if it is
between 48 (the digit 0) and 57 (the digit 9). Thus, if the first
character is not a digit, the question will be repeated.

If all is well in line 130, line 140 converts D$ into a numerical
value for use in the following program lines. Of course, you
could add a trap for unacceptable values to line 140 (: IFF< 3 or
F > 100 THEN 120).

If you believe the operator may be confused by having the
question repeated, you can modify the last part of line 130 in this
manner:

130 ... D >57 THEN PRINT "FROM 3 TO 100 ONLY": GOTO 120

Changing Errors

Instead of rejecting errors, you can change them into some
acceptable response. For example, if you have a menu of five
items, you could use these statements:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

[

r
[

r
[

[

r
r
[

Further Programming Considerations • 59

60 INPUT "YOUR CHOICE ";A$
65 A = VAL (A$)
70 IF A < 1 OR A > 5 THEN A = 5

This little trap changes both alpha entries and entries outside the
acceptable 1 to 5 range into 5. Obviously, you can change an
error into any response and you would choose one that would
represent a reasonable action.

Error Summary

This short treatment of error trapping is sufficient to enable
you to catch the major errors. The examples can be adapted to
the specific needs of your programs in order to make them
"foolproof."

Error traps that become more involved (statements more
lengthy) and that are used more than once in a program should
be placed in a subroutine so that you can save memory by calling
the same statements repeatedly.

NUMBERING SYSTEMS REVIEW

Your VIC 20 uses numbers in all its operations. Even when you
might suppose that letters or symbols are used, they are con­
verted to numbers. The letter "B," for instance, is stored and
used in the VIC 20 as the number 66. A plus sign (+) is a 43. The
BASIC word "GOSUB" is 141.

So it goes - the VIC 20 accepts all manner of input and con­
verts it into numbers for storage and use, then reconverts them
before outputting to you. If you are going to be a programmer,
you must know something about how the machine handles
those numbers.

Even if you don't "like" math, stick around. What you need to
know is not all that bad and we'll hit just the high spots. At the
very worst, grit your teeth and read along to see that the fun­
damental ideas are not difficult at all. The best part is that the
arithmetic is really simple and there are tables of values to help.

[
60 • VIC 20 Programmer's Notebook

[
Decimal System

First, let's take a look at our own numbering system that we c·
use every day- the decimal system. It is based on 10, perhaps
because we have 10 fingers on which we and our distant an-
cestors learned to count. (After all, aren't both fingers and single [
numbers called "digits"?) _

Our decimal system goes like this:

~ [

8
9

(We left some out!)

10- Now it gets interesting. When we get to the tenth
count, we move one space to the left to show the
number of "tens" (in this case, it's one ten). Let's go on

11
12 - This, for example, means one ten and two ones (or two

"units").
13

19
20 - And this, of course, indicates two tens and no ones or

units.
21

99 - Nine tens and nine ones
100- Since we can't show more than nine tens in one space

(digit), we now move another space to the left to show
ten tens or one "hundred".

243 - Two hundreds and four tens and three ones

So it goes, as high as you wish to count in our decimal or
"tens" system which is described reasonably enough as a "base
10" system.

[

[

[

[

[

[

[

[

[

[

[

r
[

[

[

[

[

[

\[
[

[

[

[

Further Programming Considerations • 61

Binary System

You must have heard that a computer is just a stupid machine.
You are about to get your first concrete evidence of the truth of
that statement.

We count by tens {decimal) and we give the machine
instructions using that numbering system. You may be surprised
to know that the VIC 20 is so dumb that it can't count by tens. It
can count only by twos! {Does that mean that it came from a
place where people had only two fingers?)

Even though there are circuits in the VIC 20 to translate dec­
imal numbers for its use, you need to know that it is a BASE 2 or
BINARY system at heart. There will be times when you will have
to do some decimal/binary translating, too, for inputs and for
determining "bit values" within a byte {more about that later).

The binary system works just like the decimal system except
that it is based on 2 instead of 10.

1- one one
10 - one two and no ones { = 2 decimal)
11 - one two and one one { = 3 decimal)

100- one four, no twos and no ones { = 4)
101 - one four and one one { = 5)
110- one four and one two and no ones { = 6)
111- one four, one two, and one one { = 7)

10101- one 16, no eights, one four, no twos and one one{= 21)

And so on - by powers of two, of course. It is a simple but
cumbersome system with which to work. A conversion table for
the binary system is located in Appendix H.

Incidentally, computers use the binary system because they
consist of little more than a very large number of electronic
switches. A switch can be either on or off, so it has only two
"fingers." On is 1 and off is 0. Thus, you might say the dumb
machine is nothing but thousands and thousands of two­
fingered hands with which to count!

You may wonder why we don't simply use binary numbers in
all instructions since the computer "understands" them best.
Some programmers do exactly that {use "machine" language)
but most of us find it much quicker and easier to use 249 instead
of 11111001.

62 • VIC 20 Programmer's Notebook

Did you notice the relationships of the "place values" to the
base numbers (1 0 and 2) of these systems? Those values are re­
lated to their bases in exactly the same way.

Chart 3-1. Relationships of Place Values

4 3 2 1 UNIT
DECIMAL 10*10*10*10 10*10*10 10*10 10 1

(10) 1()4 103 102 101 10°
10000 1000 100 10 1

BINARY 2*2*2*2 2*2*2 2*2 2 1
24 23 22 21 20
16 8 4 2 1

Each place to the left increments the power to which the base is
raised. This, of course, gives you a quick way of converting from
binary to decimal:

110110 = 25 + 24 + 22 + 21
= 32 + 16 + 4 + 1
= 53

Systems Summary

As previously stated, there is no need to get "up tight" about
numbering systems. Make no effort to memorize any conversion
tables. The binary system is simple and, if you use it enough, you
will begin to think in binary terms automatically. In the mean­
time, it is sufficient to have a general idea how it works and
know how to change from one to another with the easy con­
version table in Appendix H.

NUMBER STORAGE

The VIC 20 and most other "personal" computers operate on a
base of eight bit "bytes" or "words" or characters - that is,
each memory location has eight bits (electronic switches). Thus,
each location can hold a number up to the capacity of eight
places in the binary system. Count it up: from 00000000 (zero
decimal) to 11111111 (255 decimal). That's a capacity of 256
different numbers- sure, zero is a number. How, then, can the
VIC 20 keep a number like 65,000 decimal?

Of course, it could put each digit in one memory location and,
even though that is wasteful of space, in some situations it is

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

['

[Further Programming Considerations • 63

[

[

L
[

[

[

!
[

[

done. Usually, however, such a number is kept in just two loca­

tions (bytes). The designers were very ingenious. They decided

that the byte in one of the two memory locations would be auto­

matically multiplied by 256 and the other would be added to the

result to give the original number. Further, they decided that the

smaller number (the one not multiplied) would be put in the first

of the two locations.
Look at it this way. Imagine two boxes representing the two

adjacent memory locations:

LOCATION 1
llow byte I

LOCATION2
lhigh byte!

location 1 has the lower address (1) and the lower number (the

one not multiplied by 256). location 2 has the higher address (2)

and the higher number because it is multiplied by 256.

Now suppose we examined (PEEKed at) two memory locations

and found the following:

LOCATION43 LOCATION44

ill liD

The low byte is 1 and the high byte is 16. Following the previous

rules, we multiply 256 times 16 to get 4096 and add 1 to get the

actual stored number of 4097. The process is quite straightfor­

ward and is used often as illustrated.
The example above is not fictitious. locations (memory ad­

dresses) 43 and 44 are real. They hold the "pointer" to the

beginning of the BASIC program that you have in the VIC 20. This

pointer in the unexpanded machine does contain 4097, meaning

"'t:hat the first program statement you enter starts at that loca­

"t:ion/address (4097). We will use many such pointers in the Notes

so you should know how to interpret them.

Just as you sometimes need to PEEK at certain locations to de­

"t:ermine their contents, there will be occasions when you must

POKE numbers into memory locations. There will be times, for

~><ample, when you will wish to change the place (address)

vvhere a BASIC program begins. In order to do this, you must

Figure out what numbers to POKE into the pointer.

Suppose you need to have a program begin loading at 4322.

"Vhat numbers would you POKE into 43 and 44 to make it

,...._a ppen? Well, you would do just the reverse of the preceding

64 • VIC 20 Programmer's Notebook

procedure. First, get the high order byte by taking the integer
(whole number) portion of the result of dividing the number by
256.

4322 I 256 = 16.8828

The integer portion is 16, which becomes the high order byte.
Then, get the low order byte by subtracting from the original

number (4322) the product of 256 and the high order byte.

256 * 16 = 4096
4322 - 4096 = 226 (low order byte)

Now, with the low and high order bytes, you are ready to change
the pointer so that your BASIC program will load at 4322.

POKE 43, 226: POKE 44, 16

Before leaving this matter of decimal byte conversion, let's
have a short check-up. Don't read the answer until you have
figured out this little problem:

What is the largest decimal number that can be held in two VIC
20 memory locations?

Write your answer on a piece of paper and then see if you are
correct.

Well now, two locations will hold two bytes and the largest
number that can be in a byte is 255. That means

LOCATION 1 LOCATION 2
255 255

Both the high order byte and the low order byte are 255.
Multiplying the high byte by 256, we have

255 * 256 = 65280

and adding the low byte gives

65280 + 255 = 65535

Thus, 65535 is the largest number the VIC 20 can handle in this
way. If you do not thoroughly understand how to change back
and forth from a decimal number to decimal high and low order
bytes, you should review this section. Your understanding of
several of the following Notes is dependent upon your
familiarity with this process.

[

[

[

[

[

[

[

[:

[

[(

[)
[

[~

[

[

r:

[:.

L CHAPTER 4

[:

r:

[

[.

[

[

Notes: Cursor Control and
Graphics

This chapter contains Notes about two very important phases
of programming. You can get by without knowing how to con­
trol the cursor- just let it fall where it may. When you can move
it at will, however, your programs can include much more useful
and pleasing displays. Several approaches to cursor control are
shown on the following pages. Check out each one because you
will find occasions when your favorite method will not be
effective.

The use of graphics can vary from the simple to the ridiculous.
Seldom have we seen a plain program of any type that could not
be improved by the judicious use of graphics. Do not limit your
graphics to games and charts. They can add to the user's under­
standing as well as his pleasure.

Effective use of graphics often depends upon effective control
of the cursor. These topics are grouped together naturally.

DETERMINING THE CURSOR POSITION

If you do much programming at all, you will need a method of
determining the screen location of the cursor within a program
(while it is being executed).

65

66 • VIC 20 Programmer's Notebook

Listing

610 PRINT "01234";
620 A = PEEK {209}
630 B = PEEK {210)
640 C = PEEK {211)
650 D = PEEK {214)
660 PRINT "SCREEN RAM ADDRESS = " B * 256 + A + C
670 PRINT "LINE NUMBER = " (B * 256 + A - 7680) I 22
680 PRINT "CHARACTER POSITION = " C
690 PRINT "214 POSITION = " D

Analysis

610 displays 5 digits and positions the cursor on the 5th character
position {first position is 0).

620-650 set variables A, B, C, D.
660 displays the Screen RAM address {see Appendix) of the cursor

location as computed by formula.
670 displays the number of the line on which the cursor is located as

computed {top line is #0)
680 displays the cursor position within the line
690 displays the value in address 214

Use

As given, this routine shows the relationship of several mem­
ory addresses to the location ofthe cursor. For experimental pur­
poses, it may be RUN alone to illustrate those relationships.
Varying the number of digits in line 610 and the place on the
screen where RUN is executed will change the locations of the
cursor and the results.

Addresses 209 and 210 hold the low and high order bytes of
the line address in Screen RAM. Address 211 holds the character
position. Address 214 holds the number of lines from the top of
the display. Seldom are all four addresses needed for any one use
but all of them will be needed for various purposes.

Ordinarily, the line position value will vary between 0 and 22
and the character position, between 0 and 21. Note the number
7680 in line 670 is used as the beginning of Screen RAM.
Remember that most of the LISTings in this book use addresses
for the unexpanded VIC 20, as stated earlier. That number must
be changed if you have added memory to your machine (see
Chapter 5 for details).

Portions of this routine can be used whenever it is necessary to
know or record the location of the cursor. An example of such a

[

[

[

[

['

[

[

[

[

[

[

[

[

[

[

r
f'

l
[

[,

Notes: Cursor Control and Graphics • 67

need would occur if you wished the program to take some
special action if the cursor got as low as line number 18 of the
display. This and other examples may be found in the following
Notes.

POSITIONING THE CURSOR WITH SPC

Often, you will wish to place the cursor at a given spot on the
screen in order to have PRINTing or game action proceed from
that point. This routine presents one method you may use to ac­
complish that.

Listing

130 PRINT " EDJill!l!il";
140 INPUT "SPACES ";A
150 PRINT SPC(A) "X"

Analysis

130 clears the display and "homes" the cursor.
140 sets variable A equal to the number of spaces you wish to skip.
150 PRINTs X after skipping A spaces.

Use

This routine shows that the SPC function causes the cursor to
skip the specified number of spaces before the execution con­
tinues. In this case, the skip-count begins on line number 1 (the
second line from the top).

SPC can be used in your program whenever the new location is
to be below the current location. The maximum number of
skipped spaces is 255. Note that there must be no space between
the word SPC and the parenthesis.

Variations

1. To prevent the operator from entering an illegal number of
spaces, insert these lines:

144 IF A < 1 THEN A = 1
146 IF A > 255 THEN A = 255

2. You can cause the skip-count to begin at the upper left
corner of the display by inserting this line:

149 PRINT II 1;[•1\'d::W ";

tl

68 • VIC 20 Programmer's Notebook

Of course, you would use J.i:Jijl-e:!iJ in place of ljt•hfill to
clear the display.

3. If you wish to specify only the number of lines to be skipped,
make these changes:

140 INPUT "NUMBER OF LINES ";A
150 PRINT SPC(A * 22)"X"

To retain the safety feature mentioned above, change the 255s
in line 146 to 11s.

4. To add the line position to the number of lines, make these
changes:

142 INPUT "CHARACTER POSITION "; B
150 PRINT SPC(A * 22 + B)

If you are using the safeties, change the 255s to 10s in line 146
and insert:

147 IF B < 0 THEN B = 0
148 IF B > 21 THEN B = 21

POSITIONING THE CURSOR WITH FOR/NEXT

This positioning routine is like the previous routine except that
it is not limited to 255 spaces or 11 lines. It is based upon the fact
that when cursor movement keys are entered within quotation
marks in a program statement, those actions are taken when the
statement is executed.

Listing

250 INPUT "LINES TO SKIP ";A
260 FOR X = 1 TO A
270 PRINT II I!J ~ ";
280 NEXT
290 PRINT "X"

Analysis

250 sets variable A to the number of lines.
· 260 sets up the loop for a count of A.
270 moves the cursor down one line.
280 transfers to 260 if the count is not equal to A.
290 displays X to show skipped lines.

[

[

[

[

[

[

[

[

[

[

[

[

[

r

r:

['

[

[:

r~

r

~ :

[,

[

[:

Notes: Cursor Control and Graphics • 69

Use

This routine is used as is the preceding one. The maximum
number of lines that can be skipped is virtually unlimited. You
can even make the count large enough to scroll a current display
right off the screen - the actual number to use will depend
upon the size of the display and the location of the cursor.

Variations
1. The specification of line position is easily added to the

routine:
255 INPUT "LINE POSITION ";B;
282 FOR X = 1 TO B
284 PRINT "liJ ~ ";
286 NEXT

2. To begin counting at the home position, insert:

2S7 PRINT "ljltJI'liJ ";

Substituting J.ijljl-e!iJ will clear the screen as well.
3. Of course, you can use J.ijlji-I!JIII);J*I and f:..,:-t""'j"'lj:r::IIID

III);J.i;l in the routine to move the cursor "back" into the pre­
viously passed display area.

POSITIONING THE CURSOR WITH POKE

At times you will find the previous positioning methods un­
satisfactory. Here is a routine that avoids some of the problems
they generate. It is closely related to the first Note in this chapter
- in fact, they are often used together.

Listing

700 PRINT " lmillil-e!iJ";
710 INPUT "LINE NUMBER "; A
720 INPUT "CHARACTER POSITION "; B
730 L = A * 22 + 7680
740 L1 = INT (L /256)
750 POKE 210, L 1
760 POKE 209, L- L1 * 256 + B
770 POKE 214, A
780 PRINT "X"

70 • VIC 20 Programmer's Notebook

Analysis

700 clears the display and homes the cursor.
710 sets variable A equal to the line number.
720 sets variable B equal to the character position.
730-740 computes the high order byte of the address (watch the 7680

if you have added memory).
750 POKEs the high order byte.
760 computes and POKEs the low order byte of the address.
770 POKEs the line number.
780 displays X at the designated screen location.

Use

This routine will place the cursor at any selected location. All
subsequent PRINTing will be based on that beginning point.

Variations

1. If you wish to designate how many spaces to skip, make
these changes:

710 INPUT "SPACES ";A
720 delete
730 L = A + 7680
760 POKE 209, L - L 1 * 256
770 POKE 214, A I 22

2. You can cause the change of position to be only temporary
by deleting line 770. All PRINT statements on line 780 will be
made at the new location but any subsequent PRINTing will be
done at the old location; i.e., where the cursor was before the
POKEs were made.

3. In addition to specifying the new position, you can combine
this routine with the first in this chapter. To do so, use that
routine when the cursor is positioned where you want to PRINT
later. You can PRINT some more lines and then go back to the
earlier spot with:

920 POKE 209, A
925 POKE 210, B
930 POKE 211, C
935 POKE 214, D

In practice, you can have several pre-PEEKed places on the dis­
play and position the cursor at them as you wish.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r·
f'

ll

[

['

[:

r

[:

f'
(:

Notes: Cursor Control and Graphics • 71

PROHIBITING LINES TO THE CURSOR

In some programming situations, you will want to keep the

operator from moving the cursor into selected areas of the dis­

play. This technique will permit the placing of such areas "off

limits" to the cursor.
Suppose you wished to protect the display below line 15. This

statement can be put into the program to keep the cursor above

line 16:

xx IF PEEK (214) > 15 THEN ljl•h'J!OI

Here, we are sending the cursor to the home position when it

gets out of bounds, but any type of cursor or other action can be

taken. By changing the line number and/or substituting a less­

than sign for the greater-than sign, you can keep the cursor

above or below any line.
Of course, the cursor can be restricted to lines anywhere in the

display as in the following example:

xx IF PEEK (214) < 12 OR PEEK (214) > 17 THEN lj[tMIJ

RANDOM PLACEMENT OF THE CURSOR

In programs of all types, it is often desirable to place characters

or graphics randomly on the display. This routine will generate

random locations for such use.

Listing

900 PRINT "I:Ii:W-D!i)";
910 FOR X = 1 TO 100
920 A = INT (RND (0) * 500)
930 L = A + 7680
940 L1 = INT (L /256)
950 POKE 210, L 1
960 POKE 209, L - L 1 * 256
970 PRINT "*";
980 NEXT

Analysis

900 clears the display and homes the cursor.
910 sets a loop to count to 100.
920 sets variable A to a random number between 0 and 500.
930-960 computes and places the cursor A spaces from home.

72 • VIC 20 Programmer's Notebook

970 PRINTs an asterisk at the cursor position.
980 transfers back to the loop if the count is not 100.

Use

With this routine, the user will find an asterisk (*) "popping
up" in various spots on the display. In a tutorial program,
randomly placed designs, such as faces, symbols, and words, can
be used to reward or reinforce a correct answer or to admonish
or punish for a wrong answer. The designs could be smiling or
scowling faces, big check marks, "GOOD", "WRONG", "EXCEL­
LENT", "TERRIBLE", and so on.

In a game, random placement can be used to advantage in
such ways as placing obstacles in unpredictable locations in the
path of a user-controlled car.

The additional variety of randomly placed designs increases
operator interest and motivation.

Variations

1. The designs can be superimposed on an existing display if
this change is made:

900 PRINT "ljt•1f'!I::W ";

2. To change the number of designs, replace the number 100 in
line 910 with another.

3. You can limit the area covered by the random designs with:

920 A = INT (RND (0) * 88)

This statement will shift the area to the middle of the display:

920 A = INT (RND (O) * 88) + 150

Of course, the numbers 88 and/or 150 may be changed to any de­
sirable value(s).

4. Further variety can be introduced by PRINTing a random
number of designs:

910 FOR X = 1 TO RND (0) * 200

5. If you want to limit the random spots to certain locations, try
this change:

950 PRINT "ljt•h'!I::W ";
920 A = INT (RND (0} * 40) * 11
970 PRINT "GREAT!";

[

[

[

[

[

[

[

[

[

[

[

[_

[

L
[

['

L

r:
[

[

r
[

I [·

[

['

[:

[:

L:

Notes: Cursor Control and Graphics • 73

Or you might prefer this for some uses:

910 FOR X = 1 TO 5
915 PRINT "l:lth@l ";
920 A = INT {RND {0) * 4) * 110
922 B = RND {0)
924 IF B > .5 THEN 930
926 A= A+ 11

PROGRAMMING GRAPHICS

The effectiveness of your graphic displays is related to the time
given to designing and to your imagination in putting the blocks
together. Of course, the graphics on the front of the keys can be
entered on the screen in the direct mode. To make the same dis­
play in a program it is necessary only to place the graphics in quo­
tation marks.

As with many things, however, there are more ways than one
to achieve the same result. For example, these statements put a
small design on the screen:

10 PRINT "~ ";

20 PRINT .. ''h'il•1;t al!mmiH!I•"m•';ta "sPC{19)" '"l'd•';ta
~lltfTJ!•HJD"

Note that the graphics symbols are enclosed in quotes just as is
CLR/HOME . As you see, the SPC(19) function PRINTs a suffi­

cient number of spaces to cause the bottom of the design to ap­
pear in the correct place. For more complex designs, line 20 can
be continued until it reaches the maximum length -·four screen
lines. Beyond that, the design can continue on additional
statement lines.

For another way of showing the same design, substitute 19
actual spaces for SPC(19) in line 20. In this example, the use of
spaces is impractical, of course, but they may be more effective in
other situations. A third method is shown by the following sub­
stitution for SPC(19):

20 ... I!J ~ I:"IIIU-1! ~ miD-I! ~ I:"IIIU-1!
~···

In this case, you are directing the cursor to move down one line
and back up three spaces. In print the line appears to be a great
deal longer than it is. Actually, only four characters have been in­
serted.

74 • VIC 20 Programmer's Notebook

You may be wondering why you should bother learning three
ways to do the same thing. That's a good question! The answer
will be apparent later when you discover that one and some­
times two of the methods will not work in certain situations.

GRAPHIC FACE

We will present a graphic design in the form of a face and then
illustrate a number of ways in which graphics and cursor control
can be combined to make effective displays. (Note that the
design statements appear to be very long but that is deceiving.)

Listing

22

26

35 z = 1
880 PRINT " IIWJliU!il ";
980 PRINT QT$ + Q$ (Z) + QB$;
996 POKE 198, 0
998 WAIT 197, 64, 64

Analysis

20-26 set the design of the face.
35 sets variable Z equal to 1.
880 clears the screen and homes the cursor.
980 displays the face.
996-998 hold the display without other PRINTing until a key is

pressed.

See Fig. 4-1 for flowchart of the expanded face routine.

Use
This little smiling face can be used in games and tutorials as a

"reward" for a good score. Line 880 and the following state­
ments would normally be in a subroutine for repeated use in the
program.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
[;

r:
[i

[

r:
[:

r
r:
r:
[

r;
[;

Notes: Cursor Control and Graphics • 75

HOME CURSOR
SET CURSOR

RANDOM TONE ON
SET RANDOM COLOR

Fig. 4-1. Flowchart for the expanded "face" routine.

Variations

1. Our first variation will be to display several faces at selected
locations on the screen:

76 • VIC 20 Programmer's Notebook

890 FOR X = 0 TO 330 STEP 110
920 PRINT "l:lth'JII ";
930 L = X + 7680
940 L1 = INT (L I 256)
950 POKE 210, L 1
960 POKE 209, L - L 1 * 256
970 POKE 214, INT (X I 22)
990 NEXT

Now, four faces appear on the display. This could be done in a
simpler manner, but we'll use this method because we want to
make changes that it will accommodate.

The FOR/NEXT loop is set up to provide values of X that will
place four faces along the left side of the screen. Lines 930 and
940 make intermediate calculations to determine the face loca­
tions based on the value of X. Lines 950 through 970 place the
cursor as computed.

2. You can change the column in which the faces are PRINTed
by placing some quoted spaces in line 980 between PRINT and
QT$.

3. To add to the interest, you can cause a random number of
faces to be displayed each time the routine is RUN. These addi­
tions will do the trick:

900 B = RND (0)
910 IF X< 330 AND B > .4 THEN 990

Line 900 sets variable B equal to a number between 0 and 1. In
line 910, the face is not PRINTed ifthe value of B is greater than
0.4 unless it is the fourth face; i.e., faces 1, 2, and 3 may or may
not appear but face 4 is always PRINTed.

4. There are times when you wish to admonish rather than re­
ward the operator. With the following addition, you can choose
a smiling or a frowning (sad) face:

24 Q$(2) = " TRY HARDER! l!l ~"iil•SII=J01 ~ mJD-1!1
EmiiU ISlilDII ~

Now, all you have to do is to set the value of Z (as in line 35) be­
fore calling the subroutine. If Z = 1, the face smiles; if Z = 2, the
face frowns.

5. The selection of a smiling or frowning face can be made on a
question-by-question basis as shown previously or on the basis of
total score. The choice can be made by the program itself. These
statements will serve as examples of program selection:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
,r;

[

[:

[:

[

L
r:

Notes: Cursor Control and Graphics • 77

924 z = 1
926 IF SCORE < 80 THEN Z = 2 2

You may wish to expand this variation by having a neutral face
for mid-range scores.

6. The faces can be reverse-PRINTed with this:

978 PRINT II liliJifil II;
985 PRINT II IIIiJIG II
7. Add these lines and the reverse will be chosen only about

half the time:

976 C = RND (O)
977 IF C > .5 THEN 980

8. Of course, the color may be changed but how about having
it chosen randomly! Try this interesting addition:

973 A = INT (RND (0) * 7) + 1
974 POKE 646, A

You can restore the original color by inserting these lines:

882 CC = PEEK (646)
992 POKE 646, CC

9. If the face routine is still not fancy enough for you, just add
some sound:

885 POKE 36878, 15
972 POKE 36875, 200
987 POKE 36875,0
991 POKE 36878,0

To sound the tone longer and delay the appearance of subse­
quent faces, you may prefer to add:

986 FOR ZZ = 1 TO 50 : NEXT

10. It is clear that the number of variations is limitless for all
practical purposes. Here is one final change that will randomly
vary the pitch of the sound:

971 D = INT (RND (0) * 100) + 152
972 POKE 36875, D

MOVING GRAPHICS NO. 1

It is not enough to simply put a graphic design some place on
the screen. Very often it is necessary to move it around. This

78 • VIC 20 Programmer's Notebook

routine for moving a graphic design across the screen is quite
straightforward. You just display the design in successive posi­
tions and "erase" the old one after each move. In this example,
a small dog moves from left to right.

Listing

40 A$= ''ISiaDIJ~~ImliiiDISDIIH!
t!mm~ISDIIH! t!mml EmDI! t!mm~ISDIIH! t!mml"

50 PRINT " m:IIIU!iJ"
60 PRINT " IJl t!mmJIJl t!mmJIJl t!mmJIJl t!mmJ"
70 FOR X = 1 TO 17
120 PRINT" .. 1tl•Sitl" A$;
130 FOR Y = 1 TO 150 : NEXT Y
140 NEXT X

Analysis

40 sets variable A$ equal to the dog design and the proper number
of LEFT CURSORs to cause each PRINT to be one space to the right
(that number is equal to the number of characters in the design).

50 clears the display and homes the cursor.
60 moves the cursor a few lines down the screen (just for conveni-

ence).
70 sets up a 17 count loop.
120 displays a space and the dog.
130 delays a bit to keep the motion from being too fast.
140 transfers back to the loop if the count is not 17.

Use

Moving graphics can be used in many programs to add interest
and clarity. It is essential in games. Any characters can be moved,
including alphanumerics. Another name for this routine is
"animation" though it is rather crude by Disney standards.

Note that it is the trailing blank (space) which erases the dog's
tail each time it moves. Of course, it is not necessary to erase the
rest of the dog because the "new" dog is PRINTed over it.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

['

[

[

r:
r
[

[:

[:

[: _,

[
[-,

:

Notes: Cursor Control and Graphics • 79

Variations
1. The speed of the motion is controlled by the delay loop in

line 130. That speed can be varied by changing the maximum
count to a number larger or smaller than 150.

2. You can make the routine much more effective by having
the dog come out of the left edge of the screen and disappear
into the right edge. These additions will illustrate how that is
done:

70 FOR X = 1 TO 25
80 C$ = " .. i(l•SIII" + A$
90 IF X < 4 THEN C$ = MID$ {A$, 5 - X, 2 * X)
110 IF X > 21 THEN C$ = "1-i=MII::W" + LEFT$ {A$, 25 - X) +

RIGHT$ {A$, 25 - X)
120 PRINT C$;

The loop count i$ changed to allow the dog to walk on off the
screen. Line 80 is needed because we will PRINT pieces of A$ and
we must leave it intact so that we can select those pieces re­
peatedly. Line 90 selects an increasing number of dog and LEFT
CURSOR characters to make it appear that he is coming from be­
hind the border. Line 110 does the same thing to get him behind
the right border.

3. If you are getting bored with the walking dog, you might in­
sert this line:

1001FX = 15THENFORZ = 1T0500:NEXT:C$ = "~"
+ A$

4. The dog can be made to walk backwards by putting the
space in front of his nose and using additional LEFT CURSORs in
the design.

5. Of course, designs can be made to move up and down by us­
ing the same principles. This is illustrated by the following state­
ments which cause a design to "fall" from the top of the screen:

200 PRINT" EIIIillll!il";
210 FOR X = 1 TO 20
220 PRINT"" :REM 3 spaces between quotes
230 PRINT" lltl'l!ll;.IJII!hfji•1;.111111'J!•1;.11EmiDI!J ~ ..
240 FOR Z = 1 TO 100 : NEXT Z
250 NEXT X

The spaces in line 220 serve as erasers for the previously PRINTed
design. The U .CRSR in line 230 causes the design to move only
one line at a time. There should be as many of them as there are
lines in the design.

80 • VIC 20 Programmer's Notebook

MOVING GRAPHICS NO. 2

This technique for moving graphics differs from the preceding
one in that it allows operator control. The operator can move the
cursor as he or she wishes. The example given is actually a small
sketch program because the user can PRINT or erase characters as
he or she goes.

Listing

50 PRINT II mill-mil"
70 PRINT " 1!J ~(10 times) lil ~(10 times) . m:Jll-l!
~··;

110 POKE 198, 0
120 GET A$ •
130 IF A$ = II II THEN 120
140 A = ASC (A$)
150 IF A = 13 THEN 200
160 IF A< 32 OR A = 145 OR A = 157 THEN PRINT A$: GOTO 180
170 PRINT A$" m:Jll-l!~";
180 FOR Y = 1 TO 100 : NEXT Y
190 GOTO 120
200 GET A$
210 IF A$ = II II THEN 200

Analysis

50 clears the screen and homes the cursor.
70 moves the cursor to the middle of the display, PRINTs a period

there, and backs the cursor one space.
110 clears the keyboard buffer.
120-130 assign to variable A$ anything found in the buffer.
140 assigns to variable A the ASCII value of A$.
150 transfers to the end routine if the key pressed was I;HUII;NI.
160 moves the cursor in the direction indicated by any cursor key that

is pressed.
170 displays other characters.
180 executes a delay.
190 transfers to GET another character.
200-210 hold the display clear of other PRINTing.

Use

As it stands, this routine is a complete program that permits
the user to write and/or draw anywhere on the screen. It can be
used "as is" for many hours of pleasure.

The primary purpose for including the program here, however,
is so you can study how the cursor is handled. With that knowl-

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
[

r:

[:

[:

[

Notes: Cursor Control and Graphics • 81

edge, you can incorporate the technique into your own pro­
grams easily.

Variations

1. This change will test your ingenuity because it starts at a

random location on the screen and doesn't display the period to
show where it is:

70 R = RND (0) * 21
72 FOR X = 1 TO R
74 PRINT "I:J t!liEiiJ";
76 NEXT
80 R = RND (0) * 21
82 FOR X = 1 TO R
84 PRINT "li] t!liEiiJ";
86 NEXT

If you wish to show the starting point, insert

90 PRINT "·ISllliH!~";

2. You can make interesting and unpredictable patterns with

this change:

152 R = INT (RND (O) * 21)
154 IF R < 5 THEN PRINT CHR$ (19);
156 IF R > 4 AND R < 11 THEN PRINT CHR$ (29);
158 IF R > 10 AND R < 16 THEN PRINT CHR$ (145);
160 IF R > 15 THEN PRINT CHR$ (157);

You may get anything now!
3. With this one, you can control where but not what is

PRINTed:
165 R = INT (RND (O) * 32) + 95
170 PRINT CHR$ (R) "ISllliH! t!iW";

Variable R ranges between 96 and 127. Of course, you can make

the range any desirable values (see Appendix G for CHR$ codes).
4. Don't forget the additional possibilities available if you add

sound and/or color variations.

ACCELERATING/DECELERATING MOTION

This little routine illustrates a simple method of causing

graphic motions of any type to occur faster and faster (acceler­
ate) or slower and slower (decelerate).

82 • VIC 20 Programmer's Notebook

Listing

300 PRINT"~"
310 PRINT "I:J~ (10 times)"
320 FOR X = 1 TO 21 REM - decelerate
330 D =X* 50
340 PRINT "mD-1!)";
3SO FOR T = 1 TO D : NEXT T
360 NEXT X

Analysis

300 clears the screen and homes the cursor.
310 moves the cursor down 10 lines.
320 sets up a loop to count to 21.
330 sets variable D equal to 50 times the value of X (therefore, D in-

creases with each pass through the loop).
340 PRINTs a ball.
350 delays for a count equal to the value of D.
360 transfers back to 320 until the count is 21.

Use

Acceleration and deceleration are quite useful for making
graphics more realistic. Moving objects can brake or speed up
just as they do in real life. The same speed changes seem to take
place when an object is moving away from or toward the ob­
server (into or out of the screen).

This technique can be applied also to flashing words or
graphics. Thus, it can add variety and emotional content to a
program - suspense, excitement, and so on.

Variations

1. The rate of deceleration is determined by the calculation of
D in line 330. Obviously, the 50 can be changed to other num­
bers. For different effects, try various formulas, such as

330 o = x W r·m;J•1'1ll 2 * 50

2. Of course, the action can be made to accelerate by making
the value of D smaller with each pass through the loop if you use
such formulas as these:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
L
['

r:
[:

['

L
r:
[:

['

[

[:

r:
r:
[:

Notes: Cursor Control and Graphics • 83

330 D = 1500 I X
330 D = 1500 I X 1!D h-'iJilll!i!J 1.5

3. You can impart a "jerking" or uneven motion with

330 D = RND (0) * 2000

which may be somewhat clearer to see if line 340 is changed to

340 PRINT ... itl4111 miill!l EiiJDI! tii1mJ";

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r·
[

r:
f,
[' CHAPTER 5

r
[,

r
[

[

[

r

r
L

Memory Organization and
the Operating System

Your VIC 20 is called a 64K machine because it can "address"
65536 (64K) memory locations. Each location has a unique
numerical address just like the houses on Pine Street in your
home town. Due to the fact that the VIC 20 has only 16 binary
address lines, the highest address of the last memory location is
1111111111111111 (that's 16 ones or 65535 decimal). Counting
zero (0000000000000000) as the first memory location, we have
a total of 65536, which is 64K.

It would appear, then, that we have a potential 64K of
memory in which to load our programs. This would be the case
except for the fact that some of the memory must be used to
hold the operating system. Even the most primitive computer
must have some fundamental instructions to tell it how to do
what the program directs. Those fundamental instructions con­
stitute the operating system. In general terms, the more sophisti­
cated the computer, the larger its operating system.

Certainly, the VIC 20 does not offer 64K of memory for pro­
gramming even when the maximum amount has been added.
Table 5-1 shows the uses to which the 64K available addresses

85

86 • VIC 20 Programmer's Notebook

have been assigned. The first two columns give the addresses of
certain points of interest in decimal form. The last three columns
show the use of the addresses (memory) between those points
for an unadorned SK VIC 20, for a machine with a 3K memory
addition, and for one with 8K or more added.

Examination of Table 5-1 indicates that there is a maximum of
about 31 K available for your programming use. Let's take a look
at where that is located and at the uses of the other memory
locations. Keep in mind that ROM is "Read-Only-Memory" from
which you can get instructions, values, etc., but you cannot
change the contents of this memory.

The other memory type is RAM - a complete misnomer be­
cause it stands for "Random-Access-Memory." In truth, both
ROM and RAM are random access memories. When you see
"RAM," you should think "Read-And-Write" memory which you
cannot only read (instructions, values) but you can write there,
too; i.e., you can change the contents of RAM to suit your needs.

The first 1 K of addresses (0-1023) is used identically, regard­
less of the amount of memory in a machine. This is RAM but it is
not available to hold programs. It is "reserved" for use by the
operating system - in fact, you can consider it part of the oper­
ating system. A great many interesting things are to be found in
the reserved RAM and we will discuss it in some detail in Chapter
7.

The next 3K addresses (1 024-4096) are unused in the SK
machine but this is where the first 3K expansion memory goes.
With that addition, 1024 becomes the beginning of BASIC RAM
for your programs instead of the previous 4097. Note, too, that if
more than 3K is added, this area becomes unavailable for BASIC
programs even though there may be RAM present (it may be
used for machine language programs and other specialized
uses).

Because this is the first instance of differences in the three VIC
20 configurations, you should take care to understand how such
things can affect your programs. Suppose, for example, that
your BASIC program refers directly to the actual location of the
beginning of BASIC. There are a number of such programs in this
book. Such a program cannot refer to a specific number unless its
use is restricted to one "size" of VIC 20.

If that program were to include the statement "POKE 4097,
1 ", it would put a 1 into the first address of the BASIC RAM in a

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
L

[

[

[

[

[

[

r
r
r
[;

Memory Organization • 87

Table 5-1. General Memory Organization
DEC SK +3K +8K & UP

0

(1 K) Reserved RAM Same Same
1024

(3K) Not Used BASIC RAM Not Used
4096

(.SK) BASIC RAM BASIC RAM Screen RAM
4608

(3K) BASIC RAM BASIC RAM BASIC RAM
7680

(.5K) Screen RAM Screen RAM BASIC RAM
8192

(8K) RAM Expansion Same BASIC RAM
16384

(8K) RAM Expansion Same Same
24576

(8K) RAM Expansion Same Same
32768

(4K) Character ROM Same Same
36864

(.3K) VIC: Video Chip Same Same
37136

(.7K) 1/0 Port Same Same
37888

(.5K) Color RAM
38400

(.SK) Color RAM Same
38912

(2K) 1/0 Ports Same Same
40960

(8K) ROM Expansion Same Same
49152

(8K) ROM BASIC Same Same
57344

(8K) ROM KERNAl Same Same
65535

SK machine. In an 8K machine, the program would likely crash
because that 1 would go in about 3K past the beginning of the

88 • VIC 20 Programmer's Notebook

program. lfthe VIC 20 happened to have 13K or more RAM, the
letter "A" would appear in the upper left corner of the screen!

Now, your program may require that any one of these actions
be taken (but not all three of them) with the selection depend­
ing on the amount of memory in the machine. If you write a pro­
gram that uses the commands PEEK and/or POKE, be very sure
that you make provisions for different memory configurations.
Failure to do so will earn you dirty thoughts (at least) from others
who use your programs.

Continuing with Table 5-1 and the VIC 20 memory organization,
note that when the memory exceeds 8K, the Screen RAM area is
shifted from 7680 to 4096 and the beginning of BASIC RAM is
raised to 4608. The video display is said to be "memory mapped"
because 506 memory locations are designated to correspond to
the 506 display blocks on the screen (23 lines of 22 characters).
Anything that you (or the VIC 20) put into one of those memory
locations will be placed automatically on the screen (though, of
course, it may be "invisible" if it is the same color as the screen).
For example, if you POKE the number 81 into the middle of the
Screen RAM area, a ball will appear in the middle of the display
- if it doesn't appear, change the color of the ball or of the
screen as fully described in Chapter 9. To place anything on the
display, then, you (and the VIC 20) must know which RAM is be­
ing used for the screen.

Addresses up to 32768 are used for BASIC RAM provided
memory has actually been added there. Your BASIC program and
the working areas it may require can extend from 4608 to 32768
- a total of 27 .SK. Keep in mind that this refers just to BASIC
space. There are other addresses here and there that can be used
for other programming purposes, such as the 3K from 1024 to
4096. In fact, any one of the entire 64K of memory addresses
might be used by your programs.

A 4K character generator ROM is located from 32768 to 36863.
It holds the instructions for making upper and lower case charac­
ters and graphics, both normal and reversed.

Input/Output addresses start at 36864. An 1/0 "port" may be
thought of as a delivery gate through which material (informa­
tion in the form of numerical values) can be sent out of or
brought into the computer. The tv set/monitor is a port through
which visual images are sent to you, the operator. The keyboard
is a port through which you send information to the VIC 20.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r~

[

[

r
[:

[

[

[

[

[.

L
L

Memory Organization • 89

Other ports handle the cassette recorder/player, disk drive,
printer, joystick, paddles, light pen, and so on. Note that these
ports can be two-way gates or one-way only and that they have
specific addresses; i.e., they are memory mapped (like the Screen
RAM).

The first 1/0 locations are assigned to the Video Interface Chip,
called the VIC. (Now you know where your computer got its
name!) This remarkable integrated circuit generates the actual
audio and visual signals that go to the monitor/tv set. As if that
were not enough, it also calculates the positions/values of the
light pen and paddles.

Right in the midst of the 1/0 port addresses is the Color RAM
area - 37888 to 38911. Note that the exact location of the Color
RAM shifts a bit in this area with different memory sizes. Just as
the Screen RAM holds the character or graphic block to be dis­
played, the Color RAM holds the color to be used in displaying
that character/graphic.

After the port addresses, an 8K section is set aside for ROM
expansions (40960-49151). It is usually used by game cartridges.
The next 8K (49152-57343) contains the all-important ROM
BASIC. In a manner of speaking, that 8K acts as a translator be­
tween the high-level "BASIC" language that we usually use
(PRINT, PEEK, FOR, IF, etc.) and the machine language under­
stood by the VIC 20 (all those ones and zeros we have discussed
before). Using that translator (interpreter), we can have the VIC
20 display the digits 0 to 9 with the simple instruction, "For X = 0
TO 9: PRINT X ; : NEXT". That is much more difficult to do in
machine language.

The final 8K addresses (57344-65535) are used by the ROM
KERNAL. Whatever the reason for naming this part of the system
KERNAL, it should have been as a take-off on the word COLONEL
because the KERNAL is, in fact, the officer in charge of the VIC
20. Did you wonder how the various areas of RAM were shifted
and assigned? - well, that is one of the functions of the com­
manding officer.

Among the many tasks performed by the KERNAL is an initial
check of the amount of memory in the machine. Based upon
what it finds, the KERNAL assigns the RAM as shown in Table 5-1.
Further, it sets all the pointers found in the first 1 K "housekeep­
ing" or "reserved" RAM (see Chapter 7). It serves as a machine
language "jump table" and, ffnally, it displays the opening

90 • VIC 20 Programmer's Notebook

power-up message on the screen and turns the VIC 20 over to
you and BASIC.

As you see, the functions of several address areas change con­
siderably as RAM is added to the VIC 20. These shifts make little
or no difference in the operation of many BASIC programs- just
load them in and changes are automatically accommodated.
Other BASIC programs, however, must be adapted by the user
unless the original programmer has made adequate provisions
for RAM shifts. In Chapter 7, you will find instructions for identi­
fying such programs and modifying them to run in various RAM
organizations.

BASIC LANGUAGE CONSIDERATIONS

If you are to communicate with the VIC 20, you must learn a
language that it "knows." As mentioned previously, BASIC is the
language built into your VIC 20. Though you can arrange to use
other languages with the machine, concentrate on learning to
use BASIC well. Not only is BASIC already there, but it is an excel­
lent general purpose language that is not unlike English.

The words of the VIC 20's rather extensive BASIC language are
listed in four functional groups in Appendix B. For your review, a
very brief definition is given for each word as well as· its "token."
The use of tokens is discussed in Chapter 13.

If you are a beginner, here is a good way to learn to use the
BASIC language of your machine: Never type a word in unless
you know how and why it is used. If you will follow that rule
when copying lines from this book, you will be surprised at how
quickly BASIC begins to make sense. As necessary, refer to the
fundamental definitions and examples in your owner's manual.

SCREEN RAM USE

As shown in Table 5-1, the screen RAM begins at 7680 (or 4096)
and extends to 8185 (or 4601). As our discussions deal with a
"plain" SK VIC 20, we will be using the higher set of figures; i.e.,
7680 to 8185. You will have noted that these figures represent
506 memory addresses. That is the same number, of course, as
the number of "spaces" on the display screen: 22 characters x
23 lines = 506 spaces. The logical conclusion is that each memory
address is related in some way to each space on the screen and so
it is!

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r .

r
[

[

r
['

[

r
[

[
[

~,

-

[,

Memory Organization • 91

Appendix C shows a sketch of the display screen, that is, 23
lines of 22 spaces each (0 to 21, across the top). The numbers
down the left side are memory addresses of the spaces in the left­
most column. With these figures, you can determine the address
of any space on the screen. For example, the address of the
upper left space is 7680 (that is 7680 + 0). The upper right space
is 7701 (7680 + 21). The bottom right space is 8185 (8164 + 21).

Let's see how we can put this information to use. First, take the
following steps:

1. Turn the VIC 20 off and then on, so that the screen displays
the usual sign-on message

**** CBM BASIC V2 ****
3583 BYTES FREE
READY.

2. Type this instruction

POKE 36879, 81;Jjlii;WI

3. Press lit mi-D, then •mlji-D!iJ
4. Press I;J:UIJ;J~I four times

Do not be concerned at this time about steps 2 through 4. You
will learn more about them in Chapter 9. For now, we just want
to place the cursor (white) at the beginning of the fifth line on
the screen (black). If this does not describe the appearance of
your display, repeat the steps.

Now, type POKE 7788, 102 and press I;Jjlii;WI. Immediately,
a checkered square appears near (at?) the end of that fifth line. If
the square does not appear, you did not change the colors
properly - repeat steps 1 through 4. Now, looking again at
Appendix C, we can figure that the design has been placed in the
next-to-the-last square of the line (7768 + 20). Let's see if that is
correct.

Type POKE 7789, 81 I;Jjllml'l and, then, POKE 7790, 83
I;Jjiii;WI. The two graphic blocks appear just where you expect
them. Now, check that address/display correlation one last time
with these entries:

POKE 7680, 102
POKE 8185, 102

At this time it should be quite clear that whatever you put into
screen RAM appears on the screen display in a corresponding
position provided, of course, that the colors are different. This is

92 • VIC 20 Programmer's Notebook

very handy information and we will use it often in the Notes.
Appendix C tells you where to put the character but how do you
know what to put there?

Here is another little experiment after having executed the
previous steps 1-4:

1. Clear the screen (press J.•J:Iji-D!iJ)
2. Press I;J:UII;WI15 times
3. Type FOR X = 0 TO 127 : POKE 7680 + X, X : POKE 7834 +

X, 128 + X : NEXT I ;HUll ;WI
When this line is executed, the first six lines are filled with letters
and graphics; the seventh line is blank; and the next six are like
the first six except the characters/graphics are reversed. Poking X
(0 to 127) produced the first set and poking 128 +X (128 to 255)
produced the second.

Now, press the Commodore symbol and J.i:Ujl keys together.
This action changes many, but not all, of the characters/graphics
in each set. You may switch them back and forth by repeatedly
pressing these same two keys.

The chart in Appendix 0 will help you keep track of all these
figures. Note that the two sets are given beside the number that
is poked to display them. There is a second way to shift between
the sets. Try poking the values 240 and 242 into address 36869.

SUMMARY

As you write and modify programs, it is very important that
you keep in mind the way in which the memory is organized and
how that organization changes as memory modules are added to
the VIC 20. Adaptations of your programs must be made for the
various memory configurations or your programs will not func­
tion properly, if at all.

Special attention has been given here to the Screen RAM area
of memory. An understanding of screen RAM and its use is essen­
tial if you are to make the most of a number of the Notes. Other
parts of the memory are discussed elsewhere in this book.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

[

[

[

[

[

[

[

[

[

[

[

[

CHAPTER 6

Notes: The Display

The appearance of the display is the second most important
characteristic of your program that will influence users. The most
important, certainly, is whether or not it does what it is supposed
to do. If your program presents a clear and pleasing series of pic­
tures to the users, they will like it. Of course, "clear" refers to
clarity of organization leading to user understanding rather than
to sharpness of image.

This chapter contains techniques that will assist you in present­
ing clear and pleasing displays. They include placement of
characters (words or graphics), manipulation of screen sections
and other useful routines.

PRINTING IN GROUPS

There are times when the quantity of items to be presented is
too great to fit on one screen. At other times, you will wish to
present items in groups so the operator will not be over­
whelmed.

93

94 • VIC 20 Programmer's Notebook

Listing

190 PRINT .. Elllilti!iJ";
200 FOR X = 1 TO 100
210 Z = RND (0) * 60 + 32
230 PRINT CHR$ (Z)
250 IF INT (X I 20) = X I 20 THEN WAIT 197, 64, 64 : PRINT
300 NEXT

Analysis

190 clears the screen and homes the cursor.
200 sets up a 100-count loop.
210 generates a random character code and assigns its value to vari­

able Z.
230 PRINTs the character represented by z.
250 stops the PRINTing after each 20 characters, WAlTs for a key to be

pressed, then PRINTs a blank line before proceeding.
300 continues the loop unless the count has reached 100.

Use
This routine can be used whenever you wish to present mate­

rial in sections. The one given previously uses a series of single
characters just for the purpose of illustrating the technique. The
material can be of any type, alphanumerics and/or graphics, and
it can consist of single characters or entire lines.

Variations

1. To change the number of items in each group, it is necessary
only to change the two numbers (20s) in line 250.

2. You can do anything practical to the display after a single
group has been PRINTed. As shown, a blank line is PRINTed and
the list continues, scrolling up the screen. To see other possible
effects, try these changes after the WAIT, 64, 64 : in line 250:

250 ••. : PRINT "Elliilti!iJ ";
clears the screen and homes the cursor to start anew with each
group.

250 •.• : PRINT "----"X "----"

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

[

[

[

Notes: The Display • 95

identifies each group by its sequential number.

250 .•. : PRINT " llh'fl•l;• a (5 times)"

separates the groups with a graphic.

250 ... : PRINT" I:Jt!iEiiJ" : PRINT "PRESS ANY KEY TO CONTINUE"

skips down a line and gives the user instructions. Obviously, sev­
eral of these changes can be used together if desired.

3. When the items to be PRINTed are short as in this example,
you can have several displayed simultaneously. To do so, make
this change:

220 IF C > 0 THEN FOR Y = 1 TO C : PRINT "li] t!iEiiJ (5 times) " ; :
NEXT

250 IF INT (X I 20) = X I 20 THEN PRINT "mliJ-I!J t!iEiiJ (20 times)
":C=C+1

Now the cursor is returned to the top line for each group (line
250) and each subsequent group is PRINTed five spaces to the
right {line 220). As before, these numbers can be changed to suit
the material being presented.

4. If, regardless of how it is displayed, your material will not fit
on one display, there is a technique to take care of the problem.
Insert this line into the previous Variation.

260 IF INT (X I 40) = X I 40 THEN WAIT 197, 64, 64
: PRINT " Em:il-e!iJ " ; : C = 0

5. Don't forget both color and sound to make your display
clearer and more pleasing. Use color for emphasis and attention­
getting. A short "beep" can be effective after each group is
PRINTed to remind the operator to take some action.

SPLIT -SCREEN OPERATION

A split screen gives you the ability to display information on
one portion of the screen while being able to c..:.;mge informa­
tion on another portion. There is no convenient way in BASIC to
have true split-screen operation; i.e., have independent scrolling
on part of the screen. Fortunately, you can approximate this
function with a simple routine that, however, is limited to re­
using the top portion of the display. See also Adjustable Clear.

96 • VIC 20 Programmer's Notebook

Listing

120 PRINT" Emile!il";
130 FOR X = 1 TO 22 : PRINT "** (21 times) " : NEXT
140 LN = 7
150 GOSUB 600
160 FOR X = 1 TO 20
170 GOSUB 700
180 PRINT X
190 NEXT X

600 PRINT "l;(•hfi!J";
610 FOR Y = 1 TO LN : PRINT "(21 spaces)" : NEXT

: PRINT "l;(•h'JI!I";
620 RETURN

700 IF PEEK (214) > LN - 1 THEN WAIT 197, 64, 64
: GOSUB 600

710 RETURN

Analysis

120-130 set up a demonstration display.
140 sets variable LN to the number of lines to split.
150 calls the line clear subroutine.
160-190 set up a demonstration of use.
160 establishes a 20-count loop.
170 calls the line number check subroutine.
180 PRINTs the value of X.
190 continues the loop.

600 homes the cursor.
610 PRINTs LN blank lines and homes the cursor.
620 transfers back to the main program.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

[

[

[

[

[

[

[

Notes: The Display • 97

700 if the line number is greater than LN. WAITs for a key to be
pressed, then calls 600 to clear lines and homes the cursor.

710 transfers back to the main program.

Use

Split screen operation is quite useful when there is material on
the bottom part of the display that must remain in view while it
is explained or while questions are asked about it. The material
may be alphanumerics and/or graphics and it would be incon­
venient to redisplay it time after time. Using a split screen, the
information can be left intact while the remaining portion of the
screen is used and reused as often as necessary.

You will find use for this technique in all types of programs.

Variations

1. The number of lines cleared is determined by the value
assigned to LN before the subroutine is called.

2. You can use this method in any situation in which the opera­
tor is entering characters. Here is an example of its use with the
GET command:

330 PRINT "ANSWER?";
340 GET A$
350 IF A$ = " " THEN 340
360 IF ASC (A$) = 13 THEN RETURN
370 GOSUB 700
380 PRINT A$;
390 GOTO 340

3. Of course, you could have line 700 PRINT a warning message,
flash a color, sound a beep, or take any number of actions before
clearing the screen and proceeding.

ADJUSTABLE CLEAR NO. 1

The technique shown in this Note will permit you to clear any
part of the screen and reuse it without disturbing the remainder
of the display. It is not limited to the top of the screen.

Listing

98 • VIC 20 Programmer's Notebook

110 PRINT" IEIIIiiU!il";
120 FOR X = 1 TO 22: PRINT"** (21 times)": NEXT
130 LB = 2
140 LN = 7
150 GOSUB 600
160 FOR X = 1 TO 20
170 GOSUB 700
180 PRINT X
190 NEXT

600 GOSUB 620
610 FOR Y = 1 TO LN : PRINT " (21 spaces) " : NEXT
620 PRINT "l:ttlf'dl";
630 FOR Y = 1 TO LB :PRINT" I!J t'iiEiiJ"; : NEXT
640 RETURN

700 IF PEEK (214) > LN + LB - 1 THEN WAIT 197, 64, 64
: GOSUB 600

710 RETURN

Analysis

110-120 set up a demonstration display.
130 sets the number of lines at the top to skip.
140 sets the number of lines to reuse.
150 calls the clear-and-position cursor subroutine.
160-190 demonstrate the use of the technique.

600 calls the last portion of itself to position the cursor.
610 PRINTs the specified number of blank lines ("erases").
620 homes the cursor.
630 positions the cursor at the start of the reuse space.
640 transfers back to the main program.

700 if the cursor line is greater than the total of skip and reuse, WAITs
for a key to be pressed, and calls the "eraser" subroutine.

710 transfers back to the main program.

Use

This technique is very similar to the previous split screen Note
except that it is not limited to the top of the screen. In a game,

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

f

[

[

[

[

[
I [

[

[

[

[

Notes: The Display • 99

perhaps you need to give directions without removing the game
field or board. In a tutorial, there are times when a chart or
diagram should remain on the screen while the operator enters
answers or reads directions. In such cases, the graphic display can
stay on the screen as different questions, directions, etc., are suc­
cessively PRINTed on the cleared portion.

Variations

1. The line on which the cleared space begins is dependent en­
tirely on the value assigned to variable LB (line 130) before the
subroutine is called.

2. The extent of the cleared space is determined by the value
assigned to variable LN (line 140) before the subroutine is called.

3. Depending upon the nature of your program, it may be satis­
factory simply to write over the characters on the selected por­
tion ofthe display. If so, you can delete line 610.

4. You can change line 700 to have some other action per­
formed when the cursor extends beyond the cleared space.

5. The GOO-subroutine can be used just to erase a portion of the
display without having any intention to reuse it. Delete line 630.

6. The technique used here for positioning the cursor was
selected because it is readily understandable. Of course, you can
use other methods, for example, the memory addresses of 209,
210, 211, and 214. See Chapter 4 on cursor control for further de­
tails.

ADJUSTABLE CLEAR NO. 2

The second Adjustable Clear routine is a specialized form of
the previous Note. Here, only a portion of a line is cleared for re­
use.

Listing

110 PRINT II leililti!iJ";
120 FOR X = 1 TO 22 : PRINT "** {21 times)" : NEXT
130 LB = 12
140 LP = 15
150 GOSUB 600
160 GET A$: IF A$ = II II THEN 160
170 IF ASC (A$) = 13 THEN 200 {continue program)

100 • VIC 20 Programmer's Notebook

180 PRINT A$;
185 B$ = B$ + A$: IF LEN (B$) > 21 - LP THEN WAIT 197, 64, 64 : B$

= " " : GOSUB 600
190 GOTO 160

600 GOSUB 620
610 FOR Y = 1 TO 22 - LP : PRINT " .. "i@I:HI" ; : NEXT
620 PRINT "l:[tlf'!IJ";
630 FOR Y = 1 TO LB : PRINT "I:J ~"; : NEXT
635 POKE 211, LP
640 RETURN

Analysis

110-120 PRINT a demonstration display.
130 sets the line number of the space.
140 sets the line position of the space.
150 calls the space-clear subroutine.
160-190 demonstrate use of technique.
160 GETs a character from the keyboard buffer.
170 if the character is I;B!Ill!jh11, continues the main program.
180 PRINTs the character.
185 concatenates the answer and checks the length of the answer to

see that space is not exceeded; if so, WAITs for a keystroke,
clears the answer and space.

190 transfers back to GET another character.
600 calls a portion of own subroutine to place the cursor at the start

of space.
610 clears the space to the end of the line.
620 homes the cursor.
630 places the cursor at the start of the specified line.
635 places the cursor at the specified line position.
640 transfers back to the main program.

Use

This subroutine is used most often in programs requiring the
operator to enter a word, a number, or the answer to a question.
You can apply it any time one line or less must be cleared.

Variations

1. Line number and line position are specified in lines 130 and
140, respectively. If the values differ from those previously set,
they must be respecified before the subroutine is called.

2. Space may be cleared for reasons other than for creating
space for a response. That is determined by the program state-

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

f
[

r
[

[

[

[

[

[

r
[

[_

Notes: The Display • 101

ments following the GOSUB. Just to clear space, the subroutine
need not be changed.

3. You do not have to clear all _space to the end of the line.
Ch~ge "21 - LP" and "22 - LP" in lines 185 and 610 to suit
your needs. You can make these values into variables that can be
changed as specified before each GOSUB.

THE RISING DISPLAY

Here is a subroutine that will allow you to have your display
rise from the bottom of the screen just as the sun rises above the
horizon. With it, you can "reveal" a fully PRINTed display.

Listing

(screen filled with alphanumeric or graphic characters)
120 GOSUB 900

900 FOR X = 131 TO 24 STEP -1
910 POKE 36881, X
920 FOR Y = 1 TO 75 : NEXT Y
930 NEXT X
940 RETURN

Analysis

120 calls the subroutine after the screen is PRINTed.

900 sets up a loop counting down from 131 to 24.
910 POKEs the value of the loop-counter (X) into the memory address

36881.
920 delays for a 75-count.
930 continues the loop until 24 is exceeded.
940 transfers back to the main program.

Use

The subroutine brings a fully PRINTed display - words,
graphics, colors and everything - up from the depths of the sea,

102 • VIC 20 Programmer's Notebook

as it were. On the other hand, you can cause a display to sink
slowly out of sight. Further, a variation given below will permit
you to "pop" a complete display into view. These presentation
techniques can be quite effective in almost any type of program:
game, tutorial and so on.

Variations

1. You can make the display rise above its normal position if you
POKE in values less than 24. The display will not rise high enough
to disappear, however. Values greater than 131 (up to 255) will
cause the display to go further below the screen but there seems
little point in doing that.

2. The speed of the motion is controlled by the step value in line
900 and by the delay count (75) in line 920. The most effective
speed depends on the nature of the material in the program.

3. For a "sinking" display, make this change:

900 FOR X = 24 TO 131

4. This subroutine will cause the display to appear to jump into
existence:

110 POKE 36881, 131

900 FOR X = 1 TO 1000 : NEXT
910 POKE 36881, 24
920 RETURN

5. In a similar manner, a display can be made to wink out with
this subroutine:

900 POKE 36881, 131

(erase the display while it is out of sight)

970 POKE 36881, 24
980 RETURN

6. In all the previous uses, except the disappearing displays, the
effectiveness is usually lessened if the operator sees the display
before it disappears to rise again. To avoid this situation, the dis-

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

r
['

[

[

L
[

r
[

r
[

[

[

Notes: The Display • 103

plays should be "drawn" while the screen is out of sight. That's
right -your VIC 20 does not care whether or not the display is in
view! These statements show how it is done:

80 POKE 36881, 131

(statements to create the display just as though it were visible to the
operator)

120 GOSUB 900

You may be able to program a display in your mind but most of
us have found it best to leave out line 80 until we have worked
out the statements for the display!

THE UNFOLDING DISPLAY

When you want your display to unfold like a map from the top
of the screen, use this subroutine.

Listing

230 POKE 36883, 0
(draw invisible design)
290 GOSUB 900

900 FOR X = 0 TO 46 STEP 2
910 POKE 36883, X
920 FOR Y = 1 TO 200 : NEXT Y
930 NEXT X
940 RETURN

Analysis

230 causes the display to be invisible while the design is created.
290 calls the subroutine.

104 • VIC 20 Programmer's Notebook

900 sets up a loop incremented by 2.
910 POKEs the value of X into address 36883, each change causing

one more line to appear.
920 delays for a count of 200.
930 continues the loop unless the value is over 46.
940 transfers back to the main program.

Use
This subroutine is used much like the preceding one. Some of

the variations given as follows make it more versatile, however.

Variations

1. An existing display can be made to fold out of sight by
changing line 900:

900 FOR X = 46 TO 0 STEP - 2

2. This variation on the subroutine will cause the invisible dis-
play to appear in sections:

900 s = 36883
910 POKE S, 16
920 FOR Y = 1 TO 500 : NEXT
930 POKE S, 46
940 RETURN

This produces two sections, but you can have any number up to
line-by-line.

3. To make the whole display invisible, simply POKE 36883, 0. A
POKE of 46 will bring it all into view. Thus, you can pop a design
back and forth at will. For a real attention-grabber, try this sub­
routine:

900 FOR X = 1 TO 25
910 POKE 36883, 0
920 FOR Y = 1 TO 100: NEXT Y
930 POKE 36883, 46
940 FOR Y = 1 TO 100 : NEXT Y
950 NEXT X
960 RETURN

4. You can make only a part of the display invisible. This tech­
nique can be used in fun and games as well as some more serious
endeavors. By this time, you have discovered that each two-step
count between 0 and 46 represents one line. If you

POKE 36883, 40

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
[

['

[

[~

[

Notes: The Display • 105

the last three lines will be invisible but fully functional. They can
be written to and drawn on quite normally. Any characters that
are on the invisible lines will scroll up to the visible portion of the
screen when more is written below.

THE SHIFTING DISPLAY

Not only can the display be moved up and down or into and
out of visibility, but it can be shifted from side to side as well.

Listing

500 FOR X = 0 TO 17
510 POKE 36864, X
520 NEXT
530 FOR X = 17 TO 0 STEP -1
540 POKE 36864, X
550 NEXT
560 POKE 36864, 5

Analysis

500 sets up an 18-count loop.
510 moves the display progressively from left to right.
520 continues the loop until 17 is reached.
530 sets up a decrementing 18-count loop.
540 moves the display progressively from right to left.
550 continues the loop until 0 is reached.
560 places the display in its normal position.

Use

Of course, this routine can be used to attract attention. In ad­
dition, you can POKE a value other than 5 into 36864 in order to
compensate for an off-center display.

Variations

1. Placing the routine within a loop can be hard on the eyes
but it will attract attention:

490 FOR Y = 1 T0.25

106 • VIC 20 Programmer's Notebook

555 NEXT

2. Adding little delay loops at lines 515 and 545 will produce a

less frenetic action.

3. Values above 17 in address 36864 will cause strange things

to happen. You may wish to try changing the 17 in one of the

loops just for the experience.
4. These lines will cause the display to jump from side to side:

600 FOR Z = 1 TO 25
610 POKE 36864, 0
620 FOR Y = 1 TO 100: NEXT
630 POKE 36864, 17
640 FOR Y = 1 TO 100 : NEXT
650 NEXT Z
660 POKE 36864, 5

SAVING THE DISPLAY

How often have you created a simply terrific display and

wished there was some way to SAVE it? This routine will do just

that. It is designed for tape but can be adapted easily for disk

use.

Listing

10 DIM A$ (25)

50 POKE 36879, 42 : POKE 646, 7
60 FOR X = 7680 TO 8174: PRINTCHR$(113); :NEXT

200 FOR X = 1 TO 25
210 FOR Y = 1 TO 21
220 Z = Y + 7679 + (X - 1) * 21 : IF Z > 8185 THEN 260
230 B$ = STR$ (PEEK (2))
240 IF LEN (B$) < 4 THEN B$ = CHR$ (32) + B$: GOTO 240
250 A$ (X) = A$ (X) + B$
260 NEXT Y, X
270 OPEN 1, 1, 1, "FILE"
280 FOR X = 1 TO 25

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r

[,

r

[:

r
r

[

r

290 PRINT #1, 1; A$ (X) ; CHR$ (13)
300 NEXT
310 CLOSE 1

410 OPEN 1, 1, 0, "FILE"
420 FOR X = 1 TO 25
430 INPUT #1, A$ (X)
440 NEXT
450 CLOSE 1

600 PRINT"~";
610 FOR X = 1 TO 25
620 FOR Y = 1 TO 21

Notes: The Display • 107

630 Z = Y + 7679 + (X - 1) * 21 : IF Z > 8185 THEN 650
640 POKE Z, VAL (MID$ (A$ (X), Y * 4 - 1, 4))
650 NEXT Y,X

Fig. 6-1 shows a flowchart for saving the display.

Analysis

10 dimensions the A$ array.
50 sets the colors of the screen and characters.
60 creates a design on the screen.
200 sets up a loop for the array.
210 sets up a loop for the display characters.
220 sets the variable Z to the computed value of the current screen

position, then bypasses the reading if the value is beyond the
Screen RAM area.

230 assigns to B$ the string representation of the value held in loca-
tion Z.

240 assures that all B$ values are 4 spaces in length.
250 concatenates B$ to A$.
260 continues both loops until requirements are met (At this point, all

Screen RAM values are stored in the A$ array. The SAVE routine
follows. Be sure the machine is ready. If necessary, insert: 265
PRINT "READY TAPE": WAIT 197, 64, 64).

270 identifies and OPENs the correct tape file.
280 sets up a loop for the array.
290 prints each array element to tape.
300 continues the loop until all elements are printed.
310 CLOSEs the file.

(The LOAD routine follows.)

[
108 • VIC 20 Programmer's Notebook

[

[

[

[

[

[

[

[

[

[

[

[

Fig. 6-1. Flowchart for saving the display. [

[

[:

[

[:

[

[

['

r
[

[

[

r:
[

410 OPENs the correct tape file.
420 sets up the array loop.

Notes: The Display • 109

430 stores each array element from the tape to the A$ array.
440 continues the loop until the array is filled.
450 CLOSEs the file.

(The following routine shows how to use the array to recreate
the original display.)

600 clears the display and homes the cursor.
610 sets up the array loop.
620 sets up the character loop.
630 assigns to variable Z the current Screen RAM address and skips

ahead if it exceeds the boundaries.
640 POKEs into address Z the numerical value of the current

4-character section of the current A$.
650 continues the loops until requirements are met.

Use

There are many occasions when you wish to preserve an entire
display or a part of one. The previous routines will SAVE it to
tape, LOAD it from tape, and re-create the display.

Variations

1. As given, this series of routines functions on the entire display
screen. It can be modified to operate on any desired part of the
screen by proper selection of the loop sizes to "cover" that part.

2. You will have noticed that the original colors are not re­
tained. The re-created display takes on whatever colors happen
to be in the Color RAM when it is PRINTed. The following
changes and additions wiii.SAVE:the colors and re-create the de­
sign exactly like the original. It does require more RAM than that
built into the VIC 20. The numbers given below are for a VIC 20
with an 8K RAM cartridge.

In lines 60, 220 and 630, change 7680 to 4096; 8170 to 4590; 8185
to 4601; and 7679 to 4095.

10 DIM A$ {25) I D$ {25)
70 FOR X = 1 TO 100 : Y = INT {RND {0) * 500) : POKE 37881 + Y,

RND {0) * 8 : NEXT
{adds some random color to the sample display)

232 C = PEEK {Z + 33792)
234 IF C > 7 THEN C = C - 8 : GOTO 234
236 C$ = STR$ {C)
245 IF LEN {C$) < 4 THEN C$ = CHR$ {32) + C$: GOTO 245

110 • VIC 20 Programmer's Notebook

255 D$ (X) = D$ (X) + C$
290 .. add to the end .. ; D$ (X) ; CHR$ (13)
430 .. add to the end .. , D$
645 POKE Z + 33792, VAL (MID$ (D$ (X), Y * 4 - 1, 4))

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
r:

[

L
[

[

[,

[

L
[

L

CHAPTER 7

''Housekeeping'' in RAM

In any computer operating system, there must be areas of RAM
that are used by the system itself. There are many values such as
pointers, links, clocks, and buffers, which vary as the machine
operates. Since they do vary, they cannot be held in ROM. Your
VIC 20, like other computers, reserves sections of RAM for its
own use. These areas go by a variety of names but, most com­
monly, they are referred to as "reserved RAM" or "housekeep­
ing RAM."

You should be familiar with the housekeeping areas if you
wish to make the most of the capabilities of your VIC 20. Many
operators and many programs, both BASIC and machine lan­
guage, function quite well without making any access to these
special RAM areas. Knowledge of them, however, will enable
you to do many things more efficiently and to do some things
that cannot be done otherwise.

The first housekeeping area we will discuss is the first 1 K of
memory. It is the section labeled "Reserved RAM" in Table 5-1,
the general memory map found in Chapter 5. In every VIC 20,
regardless of how much memory has been added, the first 1 K of
RAM is used in the same way - to hold data for use by the
operating system.

111

112 • VIC 20 Programmer's Notebook

Normally, that first 1024 bytes of RAM are unavailable to
BASIC programs or to BASIC direct commands except through the
PEEK and POKE statements. With PEEK, of course, you can
see/get the value stored in any RAM or ROM location. POKE, on
the other hand, allows you to insert a value into any RAM (only)
location. Since reserved areas are RAM, you can use both PEEK
and POKE with this memory.

There is one warning that you must observe in dealing with
housekeeping RAM. Use caution when poking values into this
area of memory. Do not experiment in this manner when there is
a program or data in the machine that would be difficult to
reproduce. One simple POKE can cause a crash of the system,
resulting in a loss of program and data when the system is re­
started.

Do your experimenting with reserved RAM when you have
nothing valuable in the VIC 20. It is too easy to lose it all when
you are not SURE of what you are doing. Certainly, this applies to
POKE only. You can PEEK anywhere, at anytime, without danger
to memory contents.

THE ZERO PAGE

The uses of the zero page, the first 256 locations (0-255), are
quite interesting. While all 256 addresses are useful, certain ones
are especially so. Many are used in Notes throughout this book.
A number of useful addresses are given in Appendix A and we
shall discuss some of them.

The following little program will allow you to check (PEEK) ad­
dresses at will. It can be used as shown or it can be made into a
subroutine in an existing program in which you wish to check
memory values. Note that it gives you the value in the specific
location you select AND the value in the next location. Further,
in case these two numbers are two bytes of a single number, you
are given the equivalent of the two valu~s.

10 INPUT "ADDRESS"; A
20 B = PEEK (A)
30 C = PEEK (A + 1)
40 PRINT SPC (22) A " = = > " B
50 PRINT A + 1 " = = > " C
60 PRINT SPC (30) "DEC= " C * 256 + B
70 PRINT SPC (66)

,80 GOTO 10

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[\

[i

[

t:

[

[

[

[

r
[

[

[:

"Housekeeping" in RAM • 113

You can use this program to "look into" the reserved RAM dis­
cussed here.

Among the most useful addresses are those from 43 to 52.
These are "pointers" to RAM locations that are used by a BASIC
program.

Locations 43/44 point to the start of the RAM area where
BASIC programs are stored. If you run the little program above
and answer ADDRESS ? with 43, you will see this display:

43 =' = > 1
44 = = > 16
DEC = 4097

The number stored at address 43 is 1 and at 44 is 16. When these
low and high bytes are converted, the result is 4097, a number
that should be familiar to you as the beginning of the available
programming area in a 5K VIC 20. It is easy to see why addresses
43 and 44 are referred to as "pointers" to the beginning of
BASIC programs. (With an 8K memory cartridge installed, the
numbers would be 1, 18, and 4609 as expected.)

To give you an idea of the value of such knowledge, let's look
at but one example of its use. In one of the Notes (Append in
Chapter 8), there are directions for loading a second (or third)
program into the VIC 20 without overwriting the first as is done
normally. This is a very handy technique because it allows you to
do such things as append a set of subroutines to a program with­
out having to retype them. As you will see in that Note, you
change the 43/44 pointers to make the VIC 20 "forget" the first
program. Then you LOAD the subroutines and put the original
values back in 43/44 so the whole thing runs as one complete
program. Neat!

Addresses 45/46 are pointers to the beginning of the variable
storage area just above the BASIC program. The location pointed
to is actually the first memory address above the program.
Among other uses, you can subtract the value of the bytes in
43/44 from the value in 45/46 and find out just how many bytes
your program takes up. In appending an existing program to one
in the memory, the 45/46 values are put into 43/44 to tell the VIC
20 where to start loading the second program.

The array storage area begins as indicated in 47/48 and ends at
the address pointed to by 49/50. String storage space begins at
the 51/52 address (normally the top of memory) and moves down

114 • VIC 20 Programmer's Notebook

as it is used. Incidentally, when the addresses in 49/50 and 51/52
meet, your program has run out of memory!

Another particularly important pointer is found in 55/56,
which gives you the top of RAM memory available to your pro­
gram. These values must be changed when you wish to protect
some high memory from program use, for example, to keep your
BASIC program from destroying a machine language routine you
have placed there.

The foregoing pointers are so important to the programmer
that they are listed separately in Table 7-1.

Addresses 57/58 contain the number of the currently executing
line and 59/60 contain the previously executed line number.
These can be useful in controlling the execution of a complex
program.

Often it is advantageous for the program to determine quickly
that a specific key has been depressed. This is especially true in
machine language. Addresses 197 and 203 appear to be dupli­
cates. In any case, they hold a number corresponding to the de­
pressed key only as long as that key is held down. Think how a
PEEK at one of these locations could be useful in a test of reac­
tion speed or a fast-moving game. The contents of 197 and 203
will be 64 when no key is depressed. The number found there for
each key is given in Table 7-2.

ABOVE THE ZERO PAGE

There are, of course, three more "pages" of reserved RAM
above the zero page before we reach the end of that first {bot­
tom) 1 K of memory. After all, it takes four pages of 256 locations
to equal1024.

Some of the more useful addresses in this area are given in Ap­
pendix A. Many are used in the Notes in this book. You should
experiment with these locations in order to see just how they can
be used. Then you will be ready to put them to work in your pro­
grams.

Your VIC 20 contains many other useful addresses beyond the
first 1 K reserved section. These will be taken up as they are used
in following chapters and notes. Probably you will find those re­
lated to sound and color to be the most important to you in the
early stages of programming.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:

r:

[

r:

r
[,

[

[

[

"Housekeeping" in RAM • 115

Table 7-1. Program Space Pointers in Reserved RAM
Decimal Address Description

43/44 To the start of BASIC
(43 = low byte; 44 = high byte)

45/46 To the start of numeric variables
(one location above end of program)

47/48 To the start of arrays
(one location above end of numerics)

49/50 To end of arrays
51/52 To bottom of string storage space

(moves down from top of free
memory)

55/56 To top of free RAM
(to protect RAM, 51/52 and 55/56

must be changed)

Table 7-2. Table of "Current Key" Values in 197 and 203. A
Value of 64 Indicates That No Key Is Being Pressed

Val Key Val Key Val Key Val Key

0 1 16 32 space 48 Q
1 3 17 A 33 z 49 E
2 5 18 D 34 c 50 T
3 7 19 G 35 8 51 u
4 9 20 J 36 M 52 0
5 + 21 L 37 53 @
6 Eng pound 22

' 38 54 up arrow
7 INSTIDEL 23 LR cursor 39 f1 55 f5
8 1ft arrow 24 STOP 40 56 2
9 w 25 41 s 57 4

10 R 26 X 42 F 58 6
11 y 27 v 43 H 59 8
12 I 28 N 44 K 60 0
13 p 29

' 45 : 61 -
14 * 30 I 46 = 62 CLR/HOME
15 RETURN 31 UD cursor 47 f3 63 f7

SELF-ADJUSTING PROGRAMMING

In Chapter 5, it was pointed out that many memory locations
change when additional RAM is added to the VIC 20. You should
keep in mind that the functions of the first 1024 addresses do not
change. Location 646 changes the color of the printed character
in any memory configuration.

116 • VIC 20 Programmer's Notebook

Basically, three areas shift with added RAM: user RAM (for pro­
gramming), Screen RAM, and Color RAM. If your program uses
PEEks or POKEs into any specific address in even one of these
areas, it will not run properly when loaded into a computer of
another size.

Certainly one way to avoid this problem is to stay away from
PEEks and POKEs. These commands are quite unnecessary in
many programs; thousands have been written without them.
Yet, if you place these commands off-limits in all your program­
ming, you will severely restrict the variety and speed of graphics
and color in those programs. Sooner or later, that restriction will
chafe and you will use them.

When that happens, design your program so that it will run
properly with any amount of RAM plugged in (or out). Making
your program self adjusting is not difficult. You can do it by mak­
ing your addresses in these areas relative instead of specific.
Here's how.

PEEK and POKE in the BASIC Program Area

You already know that zero page locations 43/44 hold pointers
to the beginning of the BASIC programming area. Normally,
they point to 4097 in an unexpanded VIC 20. Suppose you POKEd
into your program at address 4202 to pack it, for example (see
Chapter 13). In a machine with an additional 3K of RAM, that
POKE would go way above where you intended. With +8K or
more of added RAM, it would go right into the Screen RAM and
ruin your display.

On the other hand, if you POKEd at address PEEK(44) * 256 +
PEEK(43) + 105, the value would go into the same place regard­
less of how much RAM was in the VIC 20. If you plan to make
several POKEs, set AD = PEEK(44) * 256 + PEEK(43) and then
make your POKEs in the form of

POKE AD + (whatever), value

PEEK and POKE in the Screen RAM

In order to create or change a display, it is often more satis­
factory to POKE values into the Screen RAM instead of using a
series of PRINT statements. You know that the absolute location
of Screen RAM does vary. The advice for writing self-adjusting

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[:

[

L
[

[

r:
L
[:

"Housekeeping" in RAM • 117

routines is quite similar to that discussed previously: use relative
instead of absolute addresses.

In this case, the addresses are relative to the beginning of
Screen RAM, of course. A quick glance back into Chapter 5 at
Table 5-1 shows that the beginning address does not change
until you reach the +8K level of additional RAM, at which time
Screen RAM shifts to 4096. The need for this shift can be deter­
mined by reference to our old favorite 43/44 addresses.

As an example of self-adjusting POKE into Screen RAM, sup­
pose you wished to POKE a value into the first position of the
11th display line. You might be tempted to write

POKE 7900, value

but resist the temptation because it would not be transportable
to all versions of the VIC 20.

Self-adjustment will require a routine similar to this
20 s = 7680
30 AD = PEEK(44) * 256 + PEEK(43)
40 IF AD > 4500 THEN S = 4096

160 POKES + 220, value
"Value" depends upon what character/graphic you want on the
display. The various values are given in Appendix C. Note that
they are not the ASCII values.

In effect, lines 30 and 40 tell the program to change the start
of Screen RAM from 7680 to 4096 when the BASIC area begins
above 4500. If every Screen RAM address is stated as in line 160,
the program will be completely transportable.

Note that line 30 is the same as given earlier under POKing into
the program area. If both types of POKEs are made, that state­
ment need be made only once.

PEEK and POKE in the Color RAM Area

By this time, you are surely ahead of me! This potential prob­
lem is handled just as are those previously. See if you can deter­
mine how the following lines work. Note that they take care of
Screen as well as Color RAM.

118 • VIC 20 Programmer's Notebook

25 c = 38400
30 AD = PEEK(44} * 256 + PEEK(43}
40 IF AD > 4500 THEN S = 4096 : C = 37888

180 POKE C + 230, value

In this case, "value" is any digit between 0 and 7 (see Chapter 9).

SUMMARY

The values that are stored in the reserved section of RAM are
quite useful to the BASIC programmer. Addresses there can be
PEEKed to get information on which to base program action.
Many can be POKEd with new values to achieve some desired ef­
fect.

Diligent use of reserved RAM will enable you to write faster
and more attractive programs- in some cases, even saving valu­
able space in the program area. Certainly, it will make possible
programs that could not be written without its use.

Study of, and experimentation with, reserved RAM will pay
rich dividends in the quality of your work.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r.
r.

[

[

[

L
[,

[

[

[.

CHAPTER 8

Notes: PEEK and POKE

Two of the most powerful commands available to you are PEEK
and POKE. With a knowledge of the purpose of the most
important memory addresses in your VIC 20, you can use PEEK
and POKE to do many things that otherwise would be impos­
sible. In addition, many "screen" and other operations can be
done much more efficiently by using these commands. A full
understanding of the use of PEEK and POKE is an essential com­
ponent of your programming arsenal. Chapters 7 and 13 will pro­
vide you a firm foundation for this understanding.

We have used PEEK and POKE in routines throughout this
book. In many instances, no special point was made of the com­
mands. Now, we will discuss specific uses and show you some of
the "tricks of the trade." First, however, here is a quick review.

The PEEK command "looks" into a specified memory address
and determines its contents. The form is

PEEK (address)

but if you enter this at the keyboard or place it in a program, you
will get a "? SYNTAX ERROR" on the screen. In this case, the

119

120 • VIC 20 Programmer's Notebook

VIC's message reminds you that you did not tell it what to do
with the information. In other words, you told the VIC 20 to look
into the address and the VIC 20 responds, "So what!" You may
write more properly, of course, PRINT PEEK (address) or another
command.

Most frequently, PEEK is used as in one of these examples:

A = PEEK (209)
W = 60 * PEEK (162)
IF PEEK (8142) < 33 THEN PRINT "NOTHING"

In each case the VIC 20 is told what to do with what it found. The
first statement instructs the VIC 20 to assign to variable A the
value of the contents of memory address 209. In the second, vari­
able W is to be assigned 60 times the value found. The third
statement causes some special action to be taken based solely on
the contents of a memory location.

PEEK, then, can be used anywhere a number would be used in
program statements. It is powerful because of the wide range of
things the VIC 20 is doing down there below the keyboard where
there is a veritable beehive of activity even while you go out for a
cup of coffee. It buzzes along (quietly, of course) at a very rapid
pace every moment that it is not turned off. The PEEK command
can tap selectively into that activity just as a radio receiver can
tap into the hundreds of thousands of radio waves crisscrossing
your antenna and allow you to hear the beep-beep of a satellite,
the local disk-jockey, or a symphony from London. Powerful? ...
you bet it is!

The memory location that is PEEKed can be anywhere from 0
through 65535. You can look into any and all of the VIC 20's pos­
sible memory locations - yes, even if there is no memory of any
kind actually there. You cannot harm, distort, or change in any
way the contents of any address by PEEKing at it. With an easy
mind, you may PEEK around to the full extent of your curiosity.

POKE, on the other hand, is a different kettle of fish. POKE and
PEEK are generally associated in programmers' minds. In the
sense that they both deal with memory locations, they are alike.
In other respects, they are different in what they do and the ef-
fects they generate. ·

Though you may POKE any address from 0 through 65535, we
urge caution in doing so. To experiment, POKE all you like,
where you like, but be sure that you do not have any irreplace-

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:

['

[

[

[

r
[

[

['

[

Notes: PEEK and POKE • 121

able material in the program memory when you do so. You can­
not hurt the VIC 20 with a POKE to any location. Indiscriminate
POKEs, however, can cause programs to be lost, because the
machine "locks up" and you lose all control. When this happens,
you can regain control only by turning the VIC 20 off and back
on.

The form of the POKE command is

POKE address, value

where the value may be any number from 0 to 255. This com­
mand tells the VIC 20 everything about what it is to do; i.e., place
the stated value into the location whose address is given (and, in
the process, wipe out the current contents). Thus, you can see
why you must be careful with POKE.

A POKE to a ROM address will do no harm. Also, it will do no
good because the contents of a ROM location cannot be changed
in this way (nor in any other readily available way). To RAM loca­
tions, POKEs can wreak havoc or be a terrific asset - it all de­
pends upon what is POKEd where.

You can POKE into the program RAM area to change (ruin or
improve) a resident program and some of our Notes do just that.
A POKE into areas of RAM used by the VIC 20 will often change
its operating characteristics for better or for worse, and many
such examples are found in this book.

The moral of the PEEK and POKE story is to use the former as
you will, but be careful about the POKEs until you are sure what
will happen. PEEKs can teach you a lot about what the VIC 20 is
doing- well, so can POKEs even when they lock up the machine!

With these commands used so frequently throughout the
other chapters, it is not practical to attempt to go into all their
uses here. We will treat only a few topics of special interest and
value here. In addition, you should be on the lookout for them
elsewhere. Most of the memory addresses useful in program­
ming are listed in Appendix A, to which you will be referring
often during your own programming.

TIMERS AND DELAYS

There is an old saying that time is money. Well, it isn't money
in programming unless you are in that business or, of course,
unless you are taking bets on the speed with which one can sue-

122 • VIC 20 Programmer's Notebook

cessfully complete a program - but forget that last part! Even
though it is not money, time is often of vital importance to the
programmer as other Notes illustrate.

Since time can be important, you must have a way of measur­
ing it. Preferably, there should be several ways so that you can
choose the one best suited for a particular application. For­
tunately, your VIC 20 gives you a choice of methods for deter­
mining lapsed time.

One "timer" is the simple and commonly used FOR/NEXT delay
loop that looks like this:

FOR X = 1 TO 1000: NEXT

The 1000 was cnosen for this loop because it provides a delay
equal to approximately 1 second (for greater accuracy, try 1 025).
Often, you will see this delay written in one of these forms:

FOR X = 1 TO A * 1000 : NEXT
FOR X = 1 TO A* 60000: NEXT

The loop is placed in a subroutine and variable A can be reset
each time before it is called. In the first case, the delay extends
for approximately A-seconds and, in the second, for A-minutes.

So slight a change as placing NEXT on the following line will
lengthen the time through the loop a bit. If you put any line in­
side the loop (even REM), the timing will be changed consider­
ably - the amount of change depending upon what the VIC 20
must do in each pass through the loop.

The FOR/NEXT loop method works quite adequately when the
task is to provide a delay while the operator reads a screen, for
example. It does have its limitations, however, because while the
VIC 20 is counting, it cannot do anything else. Suppose you want
a timer to prevent the operator from taking too long to enter a
response. Then, you want to measure time and allow use of the
keyboard simultaneously. The simple loop cannot do this with
any degree of accuracy so you must use another method.

Let's see what we can learn from this little program:

10 PRINT "TI$ = " ; Tl$
20 Tl$ = "000000" : REM - 6 zeros
30 GET A$: IF A$ = " "THEN 30
40 PRINT "TI$ = " ; Tl$
50 PRINT "TI = " ; Tl
60 PRINT "TI/60 = " ; Tl I 60
70 PRINT : GOTO 40

[

[

[

L
[

[

[

[

[

[

[

[

[

[

[

rl
r.

r
[

[
[.'

. '

L

[

[:

[

[

[

Notes: PEEK and POKE • 123

The first time you run it, line 10 will tell you how long your VIC 20
has been turned on! There are two digits for hours, two for
minutes, and two for seconds in the form of HHMMSS. Line 20
resets the clock to zero and line 30 waits for you to press any key.

A keypress causes three numbers to be displayed (and the
execution goes back to wait again). You know that the first of
the three numbers (TI$) is the time since the clock was reset. The
third number is equal to the number of seconds shown on the
first unless you waited more than a minute, in which case you
will have to convert to seconds. (Actually, there may be a one
second difference because you may catch the clock in the process
of updating). The second number (TI) is 60 times the number of
seconds.

So you know that Tl measures time in 1/60 s~cond intervals
and, when divided by 60, the result is the total elapsed seconds.
Press a key a few more times and check this information out for
yourself.

There are three memory locations where you can PEEK at the
time. Those addresses and their contents are:

162 increments every 1/60th of a second.
161 increments every 4.2 seconds (approximate).
160 increments every 18.2 minutes (approximate).

Because each location can count no higher than 256, the maxi­
mum count in 162 is 4.2 seconds. In 161, it's 18.2 minutes and in
160, it's 77.6 hours. All three counts are restarted when the main
clock is reset as shown previously.

When using the values in these addresses for delays and/or
timers, you must be careful about the statement that checks
them. For instance, if the program is waiting for input from the
user and it checks a time address occasionally, you cannot use

375 IF PEEK (161) = 15 THEN ...

The statement might check 161 when it held 14 and not get back
to it again until its value is 16 or 17. Then, the THEN part of the
statement would never be executed. Your statement should read

375 IF PEEK (161) > 14 THEN ...

You can use the contents of these locations for a variety of pur­
poses. Of course, they will provide very accurate timing. As
another example, consider that they provide an excellent source
of a random seed for the random number generator, or even a

124 • VIC 20 Programmer's Notebook

random number itself.
For further Delay Notes, see Chapter 16.

REPEATING KEYS

There will be times when you wish to control the repeat-action
of keys. Under normal, power-up conditions the repeating keys
are limited to SPACE, lh1f'-jf4•1EII, and the two II:J;f.i;l control
keys. Your program may require that these keys not repeat when
held down or that all keys do so.

A memory location controls the key-repeat function in this
manner:

POKE 650, 0 - normal repeat action
POKE 650, 100 - no keys repeat
POKE 650, 128 -all keys repeat

The indicated conditions continue until they are changed by
another command or until the VIC 20 is turned off and back on.
These commands may be included in your program statements
and/or issued directly from the keyboard.

RESERVED MEMORY NO. 1

As your programming grows more advanced, there will be
many times when you will have one or more machine language
subroutines. These must be placed in a protected part of memory
where your BASIC program will not interfere with them. There
are two ways to reserve memory and the most common is dis­
cussed here. The second method will be found in the following
Note.

You may recall from Chapter 7 that memory locations 55 and
56 contain pointers to the top of RAM memory. In a 5K VIC 20,
the values found there are 0 and 30, respectively. If you change
those low- and high-order bytes, your BASIC program will not
recognize the existence of anything above the memory to which
they point.

For example, if you POKE 56, 29 the entire top 1 K will be off
limits to BASIC except by the USR function which is used to call
machine language subroutines and by PEEK and POKE which can
be used to store and retrieve data. Thus, the top 1 K is available
for such purposes and BASIC will not write over it. Of course, you

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

L
[

[

[

[

r
L

Notes: PEEK and POKE • 125

can reserve as little or as much memory as you need by putting
the appropriate values in 55 and 56.

Changing the 55/56 values may be done in keyboard com­
mands or in program statements. If the latter, you must POKE
the same values into addresses 51 and 52 which tell the VIC 20
where to store strings (and that always begins at the top of
memory). In addition, the change must be made early in the pro­
gram or you may "trap" values up there that would be unavail­
able for use by BASIC. In other words, if your program has stored
the value of A$ before you lower the memory pointers, the pro­
gram cannot use A$ because it cannot find it. Change the top of
memory at the beginning of the program.

RESERVED MEMORY NO. 2

A less commonly used but equally effective method of protect­
ing space for data storage and/or a machine language sub­
routine is to place it below the BASIC program. Addresses 43 and
44 contain the pointers to the bottom of BASIC RAM. Normally,
the values there are 1 and 16. If these values are increased, a sub­
sequently LOADed program will be placed above the newly
specified bottom of RAM. The area below will be available, yet
protected from interference by your program except by USR,
PEEK, and POKE.

Not only is the bottom of memory an alternate to the top for
reserving space, but the two may be used in the same program.
You could have some protected memory at the top for a machine
language routine and at the bottom for data that is to be passed
to the next program.

Be aware that the bottom memory must be set before the pro­
gram is LOADed. Do so after LOADing and your program will not
run properly, if at all.

APPEND

It is often advantageous to append a program or subroutines
to the end of an existing program. Being able to do this will save
you a great deal of re-typing. Your machine has no built-in Ap­
pend function but you can do it quite easily. It is important, how­
ever, that this technique be used before a program is RUN or
there is possibility of unpredictable results. Further, it is good

126 • VIC 20 Programmer's Notebook

practice to be sure the appended statements have higher line
numbers than those in the first program. ·

After LOADing a program, execute the following commands
from the keyboard:

POKE 43, PEEK (45) - 2 : POKE 44, PEEK (46)

If, as usual, the screen now displays the normal READY sign, all is
well and you may proceed to the next paragraph. If luck is
against you and an ERROR statement is displayed, it means that
PEEK(45)- 2 was a negative value; i.e., 45 contained a value less
than 2. In such cases, you must execute this command:

POKE 43, PEEK (45) + 254 : POKE 44, PEEK (46) - 1

This accomplishes the same purpose, of course, but both the high
and low order bytes are changed appropriately.

The bottom of your RAM is now considered to be just above
the first program. LOAD the subroutine package or the second
program in the normal way and it goes above (after) the first. To
fit the pieces together, you must now lower the beginning
pointers to their original values with this command:

POKE 43, 1 : POKE 44, 16

If you are using added RAM, change the values as appropriate.
Now the second LOAD is firmly attached to the first and you

have, in fact, one program. If you LIST it, you will see that it is to­
gether. You can RUN and SAVE your "new" program in the nor­
mal manner.

DUAL PROGRAMS

There may be occasions when you find it useful to have two
independent programs resident in the memory at the same time.
It may be that one is a utility that operates on the other or per­
haps you just want both of them handy.

LOAD program No. 1 and execute these commands:

PRINT PEEK (45) , PEEK (46) : POKE 43, PEEK (45) : POKE 44, PEEK (46)

and make a note of the values from addresses 45 and 46. Now,
LOAD program No. 2

If you enter RUN, only the second program will be executed.
POKE the original values (1 and 16) back into locations 43 and 44

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[.

[

[

[

[

[

[

r
r
r
[

[

[

[

Notes: PEEK and POKE • 127

in order to RUN program No. 1 as though the other program was
not there. If you POKE the previously noted values from 45 and
46 into 43 and 44, the second program is back. Thus, you can
RUN either program selectively.

As you have discovered, the difference between this and the
Append technique is only a difference of two memory locations
in where the second program is LOADed. Here, we leave the two
zeros which tell the VIC 20 that the first program is ended. With
Append, we write over those two zeros because we don't want
execution to stop there. See Chapter 13, Statement Structure, for
further details.

Of course, more than two independent programs can be
LOADed simultaneously into the memory. It is only necessary to
note the proper values for each program and to be sure that you
do not exceed the capacity of the memory.

MERGE

To merge two programs or parts thereof is to "interleave"
their program statements according to their line numbers. For
example, if program No. 1 has lines 10 and 20 and program No. 2
has a line 15, a true merge would place line 15 between lines 10
and 20.

Unfortunately, we have found no way to merge programs in
one step, but it can be done in three. The technique requires that
the second program be appended to the first by following the
previous instructions. Then the line numbers of the second are
changed by the regular editing process - just type over the
numbers and the lines will be inserted in the proper places. The
third and final step is to delete the original lines of the second
program.

This merge method is somewhat cumbersome but, even so, it
can save you a lot of time if there are many lines involved.

ACCOMMODATION TO VARIOUS MEMORY SIZES

As you know, the locations of BASIC RAM, Screen RAM, and
Color RAM change as varying amounts of memory are added to
your VIC 20. You must take this into account if your programs are
to be transportable; i.e., if they are to function in a machine of
any size. Of course, the amount of memory can be determined
easily with a PEEK to address 44.

128 • VIC 20 Programmer's Notebook

You can build in transportability with this technique. First,
place the following lines at or near the beginning of your pro­
gram:

nn AB = 4096 : AS = 7680 : AC = 38400
nn X = PEEK (44): IF X< 16 THEN AB = 1024
nn IF X> 16 THEN AB = 4608: AS = 4096: AC = 37888

Now, AB is the start of BASIC RAM; AS is the start of Screen RAM;
and AC is the start of Color RAM.

If you will not be using PEEK or POKE with one or two of these
RAM areas, omit the corresponding parts of the previous lines.
There is no need to set up an address that will not be used and to
do so will take up valuable memory space in the program and in
the variables storage area.

All PEEK and POKE references to addresses in these three areas
should be stated in relative terms; i.e., how far above the begin­
ning of the areas they are. As an example, consider that

POKE AS + 10, 34

will place a quotation mark in the tenth position of the top
screen line on a computer of any size.

Of course, there are several techniques that will automatically
adjust relative addresses to memory size. Another location that is
used frequently is 648, which holds the screen memory "page."
Here is a statement that permits relative addressing of Screen
(SC) and Color (CO) RAM:

nn SC = 256 * PEEK (648) : CO = 38400 : IF SC < 5000
THEN CO = 37888

DATA TRANSFER BETWEEN PROGRAMS

When using a VIC 20 with little or no added memory, longer
programs cannot be accommodated. It would be possible to
break the long program into smaller pieces and LOAD and RUN
each one in succession if there were some way to transfer infor­
mation from one part to the next. This need to pass data from
one program to another can arise regardless of the size of the
VIC 20 memory or the length of the program. Fortunately, there
is a way to accomplish just such transfers.

Let's suppose that you want to pass 24 bytes of data from one
program to another. The procedure is to have the first program
reserve some memory for the purpose by using one of the

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

L
[

r
[,

[I

[.

Notes: PEEK and POKE • 129

methods given previously (we will use Reserved Memory No. 1 in
this example). Then, the program POKEs the information into
that memory space. When the second program is LOADed and
RUN, it retrieves the information from there with a few PEEKs
and proceeds on its way. Here is how to do it.

First Program

10 POKE 51, 232: POKE 52, 29: POKE 55, 232: POKE 56, 29: REM­
reserves 24 byte-spaces

- assumes the data is in A(n) -
350 FOR X = 7656 TO 7679
360 POKE X, A(X)
370 NEXT

Second Program

80 FOR X = 7656 TO 7679
90 A(X) = PEEK (X)
100 NEXT

Note that the second (and any subsequent) program does not
have to reserve the memory as was done in the first program- it
does not change when other programs are LOADed and RUN.
Further, the example assumes that the values of A(n) do not ex­
ceed 255. If the values are larger, they will have to be POKEd
digit by digit or in some other manner.

If the data had been in a string, the following changes would
be needed:

360 POKE X, ASC (MID$ (A$, X - 7655, 1))

and

90 B = PEEK (X)
95 A$ = A$ + CHR$ (B)

In this case, we are using the ASCII values of each letter in turn to
be POKEd into the protected area. Later, the second program
gets those values with PEEKs, changes them back to letters, and
concatenates them into A$. The variable A$, then, is identical to
its structure in the first program.

130 • VIC 20 Programmer's Notebook

KEY DISABLES

For various reasons you may wish to disable a key or function

of the VIC 20. It may be to prevent the user from accidentally hit­

ting a key or to prevent easy access to the program. Here are a

few which will prove useful.

LIST

This command will disable the LIST function though a program

will RUN normally:

POKE 775, 200

If the operator tries to LIST a program, the operator will get an

error statement but can reRUN the program. If the value 198 is

POKEd, instead of 200, trying to LIST the program will lock up

the VIC 20 so that it must be turned off and on to regain control.

The normal value in 775 is 199 and either this must be POKEd

or the machine will have to be re-powered to enable regular

LISTings.

STOP

The normal value in 808 is 112. The STOP key can be disabled

by

POKE 808, 0

Save

If 134 (instead of the normal 133} is POKEd into 818, the user

will receive only a "DEVICE NOT PRESENT" message when he or

she tries to SAVE the program.

All Keys Except STOP

The value in 649 controls the size of the keyboard buffer. Nor­

mally, it is set for 10 characters and sometimes you may want to

decrease that number. If you reduce the value to 0 (POKE 649, 0},

the buffer can hold no characters and the VIC 20 cannot get any

from the keyboard. That effectively removes the keyboard from

the machine so the operator can enter nothing except STOP

unless you have disabled that, also.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

[

[

r
[

[

[

/[

[

[

[

[

[

Notes: PEEK and POKE • 131

Be careful about disabling the keyboard by typing in the POKE
649, 0. If you do that, you lose access to the VIC 20 and can
enable the keys again only by pressing l-1i•1:.J.J;J41i•1;JJ or by
powering down and restarting the machine. Usually, the key­
board is disabled by an early program statement and enabled
again before the program ends. Of course, you can turn it on and
off at will within a program.

[

[

[

[

[

[

[

[

[

[

[

[

[

_[.

[

r
[

r
r
[

[

[

[

[

[

[

[

[

[

[

CHAPTER 9

Color

Now and then someone says that color is just a "frill" that can
be added to a program. They say that color is pretty but it con­
tributes nothing to a program's effectiveness. Such a view is nar­
row, to say the least. Even "pretty" can be worthwhile as long as
it does not get in the way of the purpose of the program.

One of the last places one might expect color to be useful is in
a staid business program - payroll, for example. Yet even here,
it can contribute to understanding and accuracy. When carefully
applied, color can function as a device to focus attention on, and
add emphasis to, words and actions. A graph in which the bars or
pie sections are in colors is far clearer and more understandable
than one in shades of grey or black-and-white designs.

In programs of other types, color can and does have much
greater value. Color can help to establish the mental attitude of
the operator. It can help to generate interest and add to the
sense of reality. Color can contribute to the excitement of a pro­
gram.

It is true, however, that color can be a frill. Moreover, it can
decrease the effectiveness of a program if it is used indiscrimi-

133

134 • VIC 20 Programmer's Notebook

nately. Such adverse results are more likely to occur when color is
an afterthought instead of planned as an intricate part of the
program.

We cannot tell you how to use color with discretion. We can
tell you only various methods of creating and using color. You
must supply the discretion and that is most easily done as the
program is being designed.

COLOR GENERATION

There are four primary ways to determine the color of all or
part of the display. They are to use PRINT statements (from key­
board or program), to POKE codes into selected Reserved RAM
locations, to POKE color codes into the Color RAM, and to POKE
codes into locations associated with the chip that controls the
video signal. We shall consider each of these methods in turn.

Color With PRINT Statements

You know that you can change the color of characters that are
to be PRINTed from the keyboard. This is done by pressing
ltu;JI and a digit from 1 to 8. Subsequently displayed characters
will be in the color indicated on the front of that digit key.lf you
press II:IWI-IiJ, for example, further PRINTing will be in green
letters.

This same action can be executed within a program but it must
be done in a PRINT statement. The statement

35 PRINT "ll!iiilJD "
will cause the subsequent characters to be yellow. Note that the
instruction must be enclosed in quotation marks and, thus, be a
part of a PRINT statement, though it need not be alone as in this
example:

35 PRINT " ll!iiilJD Who is there ? "

Note further, that when ll!u;JI and 8 are pressed within quo­
tation marks, a reversed Pi symbol appears on the screen. This
symbol does not appear when the command is given from the
keyboard. When the program is RUN, the symbol is not PRINTed
on the screen and the space it occupies in the statement is filled
in as though it did not exist.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
[

[

[

[

[

[.

[

[

[

[

[

L
[:

Color • 135

Once the color setting statement is executed, that color re­
mains in effect until it is changed. Color changes may be made
several times within one quotation if desired. Thus, you can have
each word or even letter in different colors.

Characters may be PRINTed in reverse colors, also.II:Jjml and
9 activate REVERSE ON; that is, the background color becomes
the character color and vice versa. When this is done in a PRINT
statement, a reverse R appears between the quotation marks.
REVERSE OFF (IIJII;JI and 0) can be executed in the same
manner but it also turns off automatically at the end of a state­
ment unless a final comma or semicolon is attached.

Color With POKEs Into Reserved RAM

There is one location in reserved RAM that is of special interest
when dealing with color. That is address 646 which was men­
tioned briefly in Chapter 7.

You can POKE a value into 646 to set/change the color of all
subsequent display characters. The effect is the same as that
achieved by using II:JI•;JI-Im'mll as discussed previously. The
form of the command/statement is

POKE 646, value

and it may be entered from the keyboard or placed in a program
statement.

The "value" may be any number from 0 to 255. Numbers 0
through 7 are the standard colors found on the digit keys except
that the value for a given color is one less than the digit on the
key. The values and corresponding colors are:

0 BLACK
1 WHITE
2. RED
3 CYAN

4 PURPLE
5 GREEN
6 BLUE
7 YELLOW

The next eight digits (8-15) place the displayed characters in
the "multicolor" mode. When these values are used, the charac­
ters lose in resolution but they are made of dots of three colors:
the border color, the auxiliary color, and the character color.
Normally, this effect is not useful with letters and numbers but it
can be very effective with graphics.

Values from 16 through 255 repeat the action of the first 16
values, switching into and out of the multicolor mode every

136 • VIC 20 Programmer's Notebook

eighth number. You can see the effect with various borders and
backgrounds by running the following program. Just hold the
space bar down until you see something you like. Then copy the
values from the left columns. The function of line 20 will be ex­
plained in the next section.

10 FOR Y = 0 TO 2SS
20 POKE 36879, Y
30 FOR X = 0 TO 1S
40 POKE 646, X
SO GET A$
60 IF A$ = " " THEN SO
70 PRINTY; X " A B C ""'10iJ"'"'I'.-.il~•1=-;· = I:1:IiiD l1hW1;HJ"
80 NEXT X, Y

Color With POKEs Into Color RAM

You know from your reading in Chapter 5 that there is a sec­
tion of memory called Color RAM. This area of memory has PRINT
positions on the screen, in the same manner as does the Screen
RAM. The difference is that values POKEd into these addresses
do not put a character on the screen but they set/change the
color of any character PRINTed there.

Color RAM addresses for the 5K VIC 20 extend from 38400 to
38905 as shown on the Color RAM map in Appendix E. If you
POKE a value (0-255) into one of those addresses, any character
will assume the color determined by the value POKEd. No effect
is seen if there is no character at that screen location. Later
PRINTing at that location assumes the color dictated by the
cursor, so you can affect only preexisting characters with this
method.

This short program will. enable you to experiment with using
Color RAM:

10 PRINT" IGilil-e!iJ ";
20 FOR X = 1 to 176
30 PRINT" E.Giilm ";
40 NEXT
SO FOR Y = 1 TO 8
60 INPUT "WHERE "; A
70 INPUT "VALUE "; B
80 POKE A + 38400 , B
90 NEXT

RUNning this program PRINTs eight rows of balls. Answer
"Where?" with any number from 0 to 175 to select a ball at loca-

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

f:

[

r

['

[,

[

r
L
[

L
[

Color • 137

tion 38400 plus the number. Answer the "Value?" question with
numbers between 0 and 255 to see the selected ball change
color.

You will find that the values function in exactly the same way
that they would if POKEd into 646 (previously). In groups of
eight, they alternate between normal colors and multicolors.
The difference is that only one position is affected. Note once
again that when a number corresponding to the background
color is POKEd, the ball seems to vanish.

Color With POKEs to the "VIC"

Earlier we said that the VIC 20 probably got its name from the
6560 Video Interface Chip (VIC), an integrated circuit that con­
trols the video signal produced by the machine. Now you will be­
gin to learn something about the great power of that chip. We
will limit our attention at this time to locations 36878 and 36879,
which affect the color of the display.

Location 36879 is the primary color determiner in the VIC 20.
Actually, the byte POKEd into 36879 determines three separate
but related colors. In order to understand and use it fully, it is
necessary to consider the individual bits within the eight-bit
"word" of the byte; that is, you must convert decimal into
binary numbers and vice versa.

Chapter 2 contains instructions for these conversions. We will
just hit the high spots here to give you the idea and you can take
it from there. If you prefer not to get down to the bit level at this
time, skip down three paragraphs for empirical methods for us­
ing 36879.

Location 36879 (and all the others) will hold a byte that con­
sists of 8 bits (ones and zeros). The first three bits - the Least
Significant Bits (LSB) - set the frame color of the display. The
fourth bit sets the background/foreground (0 is equivalent toRE­
VERSE ON and a 1, REVERSE OFF). The last four bits- Most Sig­
nificant Bits (MSB) - set the screen color.

Diagrammatically, it looks like this:

MSB < - - - - - - - -> LSB
screen rev frame

138 • VIC 20 Programmer's Notebook

The color values are:

0 BLACK
1 WHITE
2 RED
3 CYAN

4 PURPLE 8 ORANGE 12 LT. PURPLE
5 GREEN 9 LT. ORANGE 13 LT. GREEN
6 BLUE 10 PINK 14 LT. BLUE
7 YELLOW 11 LT. CYAN 15 LT. YELLOW

Now let's look at a couple of examples. Suppose you wanted a
green screen with yellow border and reverse off. The screen
would be 5 (01 01); the reverse, 1; and the frame, 7 (111). String
the binary numbers together and you have 01011111, which is
equal to 95 decimal. POKE 36879, 95 and you have it. You can
turn on the reverse by cha~ging the fourth bit to 0: 01010111,
which is equal to 87. Any permissible color combination can be
set in the same manner.

Rather than go through these number conversions, you can go
to the Screen and Border Color Table in Appendix F. The num­
bers in this matrix will set the screen and border colors as indi­
cated. Reverse will be OFF. Reverse can be turned on for any
given combination by subtracting eight from the number in the
matrix.

Then, too, you can run this little program to see what is avail­
able and choose what you want. It will show all the combina­
tions.

10 FOR X = 0 TO 255
20 POKE 36879, X
30 PRINT" m!D-miJ" SPC (185) X
40 GET A$
50 IF A$ = " "THEN 40
60 NEXT

Address 36878 is an interesting one in the color realm. The four
MSBs can be used to set the multicolor mode to the desired color.
Since there are 4 bits, the value can be from 0 to 15 with the
color corresponding to the color code table. There are two ca­
veats in the use of this address.

First, the four MSBs of 36878 do set the multicolor mode color
but it is effective only on those screen locations that previously
have been set up in that mode. Refer to the previous sections on
how to POKE multicolor into Reserved RAM and Color RAM. The
second caveat is that the four LSBs of this address are used to set
the volume of the sound generators (see Chapter 11 for details).

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r~

r~

f '.

r
[:

[.

[

[

[.

Color • 139

You must be careful to leave these bits undisturbed if any of the
sound generators are being used.

SUMMARY

This business of color on the VIC 20 can be quite confusing at
first because there are so many colors, color combinations, and
methods to achieve them. Perhaps the best way to start out is to
experiment with them as suggested here in order to know just
what is available. When you know that, you can always refer
back here to find out how to create the effect you want.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r

[

r
[:

f:

[:

[:

[:

CHAPTER 10

Notes: Data Management

Any program that you write will involve the management of
data; i.e., the use of information. That data may be in numeric or
string form and its manipulation may be simple or complex, but
the processes are there, for the VIC 20's whole operation de­
pends upon data. It is for this reason that a knowledge of data
management is essential to the programmer.

There is yet another reason why data management is of great
importance to you. When data is manipulated effectively in nu­
meric and string variables, you avoid wasting space, both in the
memory and on the tape or other storage medium. The saving of
space on the tape, especially, means a considerable saving of
time for you and the operator, as the data is sent to and from the
tape.

The main functions for handling data are:

ASC
CHR$
LEFT$
LEN

MID$
RIGHT$
STR$
VAL

141

142 • VIC 20 Programmer's Notebook

These functions are straightforward and they are explained ade­
quately in your owner's manual. There is a bit of a quirk, how­
ever, in the use of MID$ so we will mention that before getting
on to the Notes.

In a manner of speaking, the MID$ function can be used in two
ways. The first and most common appears in this form:

B$ = MID$ (A$, 5, 3)

When this command/statement is executed, B$ becomes equal to
the part of A$ that begins with the fifth character and is three
characters long; i.e., a string consisting of the fifth, sixth, and
seventh characters of A$.

The second way of using MID$ is often quite useful. The third
term in the parentheses is omitted and, following the previous
example, would look like this:

B$ = MID$ (A$, 5)

Now, B$ becomes equal to the fifth character and all following
characters in A$. If A$ = "ABCDEFGHIJ", then B$ would equal
"EFGHIJ" instead of "EFG" as it would previously.

In dealing with data management, you should be aware that a
string variable can contain digits, in fact, it can be all numbers.
(Numeric variables, however, cannot contain alpha characters.)
In many instances, it is advantageous or even necessary to collect
digits as strings of characters or, if they are already numeric, to
change them to strings.

The reason for preferring strings is that they can be manip­
ulated in many ways that cannot be applied to numerics. For in­
stance, how would you go about getting the last four characters
of numeric variable A = 4279643 ? It would take some mathe­
matics. If A$ = "4279643", however, it is an easy matter to get
thing like that, you would have to compute some new mathe­
matics. If A$ = "4279643," however, it is an easy matter to get
the last four digits with the LEFT$ (or MID$) function.

When numbers are collected as, or are converted to, strings in
order to manipulate them, they may be used as strings if they are
simply to be listed on a report or something of that nature. If
they are to be used mathematically (added, subtracted, divided,
etc.) they are easily converted to (or back to) numeric values with
the VAL function.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r.
[;

[:
~ '

r :

[

[

[:

r
[;

[

L
[

Notes: Data Management • 143

ARRAYS OF RANDOM CHARACTERS

It is often necessary to build arrays of random characters. They
are used in some types of programs and they are needed to test
programs in their development stages.

Listing

10 DIM A$ (15)

170 FOR X = 1 TO 15
175 FOR Y = 1 TO 5
180 W = INT (RND (0) * 26) + 65
185 A$ (X)"= A$ (X) + CHR$ (W)
190 NEXTY
195 NEXT X

200 FOR X = 1 TO 15 : PRINT A$ {X), : NEXT

Fig. 10-1 shows a flowchart for generating random strings.

Analysis

10 dimensions the A$ array.
170 sets up a 15-count loop {number of strings).
175 sets up a 5-count loop (number of characters per string).
180 generates a random number between 65 and 90.
185 concatenates the character represented by the value of the ran­

dom number to A$ {X).
190-195 continue the loops until conditions are met.
200 PRINTs the strings for demonstration purposes.

Use
This sequence of statements generates a series of 15 strings of

5 characters each. Such random strings can be used to test string
handling operations in your programs. For example, it is
advisable always to test sorting and recording subroutines be­
fore "buttoning up" a program. In case of errors, you can get
tired of repeatedly entering test strings manually.

Of course, there are programs that directly make use of ran­
dom strings. Among these are programs for advanced typewrit­
ing and for testing the operator's memory. An interesting appli-

144 • VIC 20 Programmer's Notebook

GENERATE
A RANDOM

LETTER

Fig. 10-1. Flowchart for generating random strings.

cation is the generation of "random code groups" for Morse
code study by Scouts and ham radio operators.

Variations

1. The number of strings can be changed by changing the 15 in
lines 170 and 200. The string length is determined by the 5 in line
175.

2. If strings of random numerics are needed, make these
changes:

10 ... , B {15)
180 W = INT {RND {O) * 10) + 48
182 IF Y = 1 AND W = 48 THEN 180
192 B {X) = VAL {A$ {X))

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r:
[I

[

L

['

[

[

[

[

Notes: Data Management • 145

Note that Line 182 prevents the first digit from being a zero so
that all variables will be of the same length.

3. The nature of the strings can be made to suit your needs. Use
Appendix G to find the proper code ranges. This variation in the
original Listing generates a mixture of letters and digits:

180 W = INT (RND (0} * 43} + 48
183 IF W > 57 AND W < 65 THEN 180

Line 180 generates numbers between 48 and 90 that include
digits and letters. Line 183 rejects the numbers from 58 to 64
which represent symbols not wanted. ·

4. As illustrated by line 183, you can lock out any characters or
groups of characters you wish.

EQUALIZING VARIABLE LENGTHS

In data management, there will be occasions when you want
all the data to be of the same length. This is especially true in
some instances of concatenating strings as pointed out later.
Equalizing variable lengths is a simple matter of inserting one
line in your program.

This line will make all affected variables seven characters long:

230 IF LEN (D$} < 7 THEN D$ = "" + D$: GOTO 230 : REM --one space
between quotes

Here, if D$ is less than seven characters long, a space is added to
the front of it and execution goes back to measure the length of
the string again. If the length is not seven, another space is
added and if it is, execution proceeds to the next line of the pro­
gram.

Of course, the space(s) can be added to the end of D$ by
reversing the positions of D$ and 11 11 in line 230. Any character
can be added instead of a space- just put it between the quotes
in line 230.

CONCATENATING DATA

Concatenate - that is just a fancy word for II add. II Well, not
quite. If you add 3 and 5, you get 8. If you concatenate 3 and 5,
you get 35. Some of the confusion arises because the same sym­
bol (+) is used for both add and concatenate. Further, there is

146 • VIC 20 Programmer's Notebook

the difference between numeric and string data as shown in
these statements:

80 A=3:B=5
90 PRINT A+ B
100 A$ = "3" : B$ = "5"
110 PRINT A$ + B$

Line 80 defines A and B as numeric variables, so line 90 adds
the two numbers and displays 5. On the other ha.nd, line 100
identifies two string variables that are concatenated to 35 in line
110. The process is somewhat clearer when dealing with letters
or words. Apples and oranges cannot be added but they can be
concatenated to "applesoranges."

Concatenation, then, can be thought of as tacking one piece
of data to the end of another. Webster says that to concatenate
is "to connect or link in a series or chain." The process is quite
valuable when dealing with strings. You will find concatenation
used in many of the Notes throughout the book.

Concatenation of items has a special advantage when handling
strings containing related pieces of information. For example,
consider a stock inventory. Instead of assigning each piece of
information about an item to an individual variable, you could
concatenate the information into something like this:

B$ (1) = "A13976123"
B$ (2) = "C17022056"

A LEFT$(B$(n),1) statement would always produce the depart­
ment (A or C in this case). MID$(B$(n),2,5) would give the stock
number (13976 or 17022) and RIGHT$(B$(n),3), the quantity (123
or 056). This approach would save a lot of memory and time.

Suppose, however, the corresponding items were of different
lengths. Your variables would look like this:

B$ (1) = "A13976123"
B$ (2) = "AF627056"

Obviously, you could not separate it by the method indicated
previously and get any useful information. You would have a
classic case of GIGO - Garbage In, Garbage Out!

One way around this problem would be to fill in the shorter
items to correspond in length to the longest item of the same
type with the method shown in a previous Note. That would
mean a lot of spaces or blanks that would waste memory though
not as much as using individual variables.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r~~

r:

[

[

[

[

L
['

Notes: Data Management • 147

Of course, there is another solution to the problem of different
length items. That is to concatenate them but insert a
"separator" symbol to indicate where one ends and the next be­
gins. Consider the following example (it is numbered to use the
random strings generated by the previous Note).

Listing

300N=0
310 FOR X = 1 TO 5
320 FOR Y = 1 TO 3
330 N = N + 1
340 D$ {X) = D$ {X) + A$ {N) + "/"
350 NEXT Y, X
370 FOR X = 1 TO 5 : PRINT D$ {X) : NEXT

Analysis

300 sets the counter variable to zero.
310 sets up a 5-count loop for the concatenated strings.
320 sets up a loop to put 3 small strings in each one.
330 increments the small-string counter.
340 concatenates the small strings with each followed by a separa­

tor.
350 completes the loops.
370 PRINTs the concatenated strings for demonstration.

Use
Though the statements are shown to use previously generated

data, A$(N) could be data from any source. It could be read from
data statements in the program or entered by the operator. In
any case, they are concatenated and stored in this manner:

D$ {1) = "FISHING LURES/BOWMAN BEN/POP FISH/JUN 83/"
D$ (2) = "MODEL ROCKET CAMERA/WJSE AD/ •.. .1 /"
D$ (n) = "1 1 ...••••• .1• .1"

This concatenation process is useful any time you have data of
variable length to use or SAVE/LOAD. Especially, if tape cassettes
are used, the time saving can be considerable.

The following Note will show you how to re-create the original
pieces of data from the concatenated strings.

Variations

1. A slash (I) has been used as the separator here. You should
choose a separator symbol that will not appear in your data or

148 • VIC 20 Programmer's Notebook

the data will not be properly re-created later.
2. You should use loop specifications in lines 310 and 320 to

match those of your items and the number of storage variables

you wish to create.
3. The manual input of data to be concatenated requires a dif­

ferent treatment than that shown previously. The following
sequence of lines will allow manual input.

Listing
10 DIM D$ (12) : REM -the maximum number of expected

storage variables
300 N= 1
310 PRINT" II:"IUil-e!iJI ENTER@ TO END STOCK ITEM;* TO END

LIST"
315 8$ = "/" : INPUT "DATA"; A$
320 E$ = RIGHT$ (A$, 1)
325 If E$ = "@"ORE$ = "*"THEN GOSU8 350
330 D$ (N) = D$ (N) + A$ + 8$
335 IF E$ = "@"THEN N = N + 1 : GOTO 310
340 IF E$ = "*" THEN 380
345 GOTO 315
350 IF LEN (A$) = 1 THEN 8$ = E$: A$ = " " : RETURN
360 A$ = LEFT$ (A$, LEN (A$) - 1) : 8$ = 8$ + E$: RETURN
380 FOR X = 1 TO N : PRINT D$ (X) : NEXT

Analysis
10 sets the dimensions of the storage array.
300 sets the counter to 1.
310 PRINTs the input directions to the user.
315 establishes the separator and asks for a response.
320 assigns the last character to E$.
325 if E$ is equal to the symbol for end-of-item or end-of-list, calls

the subroutine.
330 concatenates response plus separator or end symbol.
335 at the end of the item, increments the counter and seeks another

item.
340 transfers to demonstration at the end-of-list symbol.
345 transfers back for additional data on the item.
350-355 subroutine.
350 changes input and separator if the length is 1.
355 shortens the response and changes the separator.
380 demonstrates the storage variables.

Use

This routine is useful whenever data of undetermined number
and length are to be entered manually. The operator is required

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

L
r:

['

l:
[;

['

[

r:
r
['

Notes: Data Management • 149

to furnish indication of the end-of-item and end-of-list. All
markers are automatically inserted at the appropriate places.

The storage variables appear quite different from those of the
previous example. Now they are in this form:

D$ (1} = "WINTER BIRDS/BOWMAN BRIAN/POP AV/JUL 83/@"
D$ (2} = "WORDPROCESSING/KENNEDY CHARU /@"
D$ (3} = "ADV / ... / 1.. .. ./ /*"

Re-creation of the original form is shown below.

PARSING DATA

Parse -well, that is another fancy word used in data manage­
ment and it means breaking something up into its parts. When
data is concatenated to improve the efficiency of handling it in
variables and/or data statements, sooner or later it must be
broken up into its original pieces. That is exactly what we do
when we parse data. The proper parsing method to use will
depend on the nature of the concatenated data.

Parsing Method 1

When items of a concatenated string were the same size or
were made to be the same size, their separation is quite straight­
forward. All you have to do is to use the LEFT$, MID$, and
RIGHT$ functions incorporated in BASIC. These functions are
useful in this case simply because the various data items are of a
known size. LEFT$(B$(n),10) picks off the 10 left-most characters
of B$(n) each time it is applied.

Here is an example that uses strings in DATA statements,
though they could be from any source:

200 FOR X = 1 TO 20
210 READ A$
230 PRINT LEFT$ (A$, 12}
240 PRINT MID$ (A$, 13, 14}
250 PRINT RIGHT$ (A$, 5}
260 NEXT

900 DATABROADWELL CMNORTH CAROLINA12345

150 • VIC 20 Programmer's Notebook

910 DATAWILLIAMS AH NEW MEXICO 54321
920 DATABELL BW IOWA 23456

This program segment will always PRINT the name, state, and
zip of the DATA list. This is true because shorter items have been
"padded" to make their lengths predictable. It would not work
if the spaces were omitted from the DATA.

Notice that all those spaces in this type of DATA string use up
memory. That is why it should be employed only when the items
are of fairly consistent length. Other types of concatenat­
ing/parsing should be used when item length varies (as it usually
does).

Parsing Method 2

This type of data separation makes use of the fact that items
have been concatenated without any extra spaces for padding to
a standard length. Instead, the variables contain separator sym­
bols to prevent items from blending into each other.

In this example, a single list is to be parsed into individual items
that are separated by a slash (!).The variables were concatenated
by a method shown previously. This time, the data is in program
statements for the sake of clarity.

Listing

10 DIM F$ (25) : REM - to accommodate the new list
90 D$ (1) = "WORREL BJ/BOX 3421/COLUMBIA SC/87654/"
95 D$ (2) = "HUXTABLE SB/3306 THIRD AVE/NEW ROCHELLE

NJ/23456/"

410 N = 1
420 FOR X = 1 TO 10 : REM - the number of variables to be parsed
430 FOR Y = 1 TO LEN (D$ (X))
440 B$ = MID$ (D$ (X), y I 1)
450 IF B$ = "/"THEN N = N + 1 : GOTO 470
460 F$ (N) = F$ (N) + B$

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

L
f!

[

r.

[

r:

470 NEXT Y
480 NEXT X

Notes: Data -Management • 151

520 FOR X = 1 TON: PRINT F$(N), : NEXT

These statements separate the original space-saving variables
into individual items. It can be used because the number of items
is known.

Parsing Method 3

This method of parsing variables is somewhat more complex
than the preceding ones. It is designed for use with manually
input information or other data that is of unknown length and
quantity. It requires that the parts be separated by a slash (!),the
items separated by an @ symbol, and the end of the list identi­
fied with an asterisk (*). Again, the variables are shown in the
program for clarity.

Listing

10 DIM F$ (15)
90 D$ (1) = "QWERTY/123456/AIGOOD/TRY/@"
92 D$ (2) = "NOW/IS/THE/TIME/@"
94 D$ (3) = "THE/QUICK/BROWN/FOX/JUMPED/OVER/*"

410 N = 1
420 FOR X = 1 TO 50 : REM - more than the number to be

parsed
- 430 FOR Y = 1 TO LEN (D$ (X))

440 B$ = MID$ (D$ (X) ,Y, 1)
450 IF B$ = "*"THEN N = N - 1 : GOTO 520
460 IF B$ = "@"THEN 500
470 IF B$ = "/"THEN N = N + 1 : GOTO 490
480 F$ (N) = F$ (N) + B$ -
490 NEXT Y
500 NEXT X
520 FOR X = 1 TO N : PRINT F$ (N) : NEXT

152 • VIC 20 Programmer's Notebook

Analysis

410 sets the new-variable counter to 1.
420 sets up a loop large enough to handle the concatenated data.
430 sets up a loop to the length of the current variable.
440 extracts sequential characters from the variable.
450 if the character is an asterisk, decrements the counter and leaves

the parsing routine.
460 if the character is @, changes to a new input variable.
470 if the character is a slash, increments the counter and starts a new

variable.
480 concatenates the new variable.
490-500 continues the loops.
520 demonstrates the parsed variables.

Use

This parsing program segment is labeled to match the con­
catenation of manually entered data in the previous Note. It can

be used with data of any origin and almost of any form if match­
ing separators and symbols are used. With this parsing method it
is not necessary to know much of anything about the stored data

- just enough to dimension the arrays so that they are large
enough to store it.

FINDING BURIED DATA

DATA statements are read serially and sequentially. The first

READ gets the first datum, the second READ gets the second
datum, and so on. A I;J::t.i(•m:t statement resets some pointers

so that the following READ statement will cause the first datum
to be read again. It is not always convenient to access the data

sequentially. Sometimes you will want (or need) to begin with
the sixteenth or forty-second datum. Here are two methods that

can be used to access these values in the order you choose.

Access Method 1

In this method, you read and discard all items up to the one

you want or the one with which you wish to begin READing. No

special preparation of the DATA statements is required.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

L
r:

r
r
L
[:

L

[

[;

[:

Listing

50 FOR X = 1 TO 16
55 READ A$
60 NEXT X
65 PRINT A$

120 RESTORE
125 FOR X = 1 TO 41
130 READ A$
135 NEXT X
140 FOR X = 1 TO 9
145 READ A$: PRINT A$
150 NEXT X

Notes: Data Management • 153

Fig. 10-2 shows a flowchart for finding buried data, Method 1.

Analysis

50-60 READ the first 16 data values. Note that the first 15 are "dis­
carded" because each one is replaced in variable A$ by the
next one.

65 PRINTs the sixteenth datum (the final one read).
120 resets the data pointer to the first datum.
125-135 READ the first 41 data values.
140-150 READ and PRINT the next 9 values.

Access Method 2

This method is somewhat like the first except that you need
not know the number of items to discard to get to the one you
want. This is possible because the DATA statements have been
specially marked with coded locations.

Listing

30 READ A$

[
154 • VIC 20 Programmer's Notebook

[

[

[

[

[

[

[

[

[

[

[

[

Fig. 10-2. Flowchart for finding buried data, Method 1.
[

[

r:
L
r
[

L
['

[,

[:

[:

[:

35 IF A$<> "C" THEN 30
40 FOR X = 1 TO 6
45 READ A$: PRINT A$
50 NEXT X

90 RESTORE
95 READ A$
100 IF A$ <> "B" THEN 95
105 FOR X = 1 TO 3
110 READ A$: B$ (X) = A$
115 NEXT X

Notes: Data Management • 155

300 DATA A,ONE,TWO,THREE,FOUR,FIVE
305 DATA B,SIX,SEVEN,EIGHT,NINE,TEN
310 DATA C,TWENTY,THIRTY,FORTY,FIFTY.SIXTY,SEVENTY

Fig. 10-3 shows a flowchart for finding buried data, Method 2.

Analysis

30-35 keep READing and discarding data until it READs C.
40-50 READ and PRINT the next 6 datum entries.
90 resets the DATA pointer.
95-100 READ and discard until it finds B.
105-115 assign the next 3 data items to array B$ (X).

Use

This method is preferred over the preceding one because you
don't have to count and recount the DATA to get the number of
discards correct. To use it, however, you must properly mark the
places you will want to find later. Obviously, the two methods
can be used on the same DATA statements.

It might appear that neither of these methods of finding
buried DATA is necessary- just rearrange the order of the DATA
statements and you won't need them. You are correct, of course,
for these simple examples. You will discover, however, that as
your programs become more complex these methods are quite
useful and are sometimes necessary to prevent your having to re­
peatedly re-type lines and lines of DATA statements in a pro­
gram.

[
156 • VIC 20 Programmer's Notebook [

[
NO [

[

[
NO

[X= X+ 1

[

NO [

[

[
NO

X= X+ 1

[

Fig. 10-3. Flowchart for finding buried data, Method 2. [

Here is an example of a program in which these methods can -

be used to reduce your work. It is a program in which you must [-_-
keep items of DATA in the same relative order even when items
are added and deleted. Suppose you want to display or print

[

[

t
[

L
[

['

[

[

L

[

L

Notes: Data Management • 157

four columns of groups of words from DATA statements.
You could read the first word in each column (four words) and

print them, read four and print those, and so on to the end. The
result would be:

w1
w2
w3
w4

x1
x2
x3
x4

y1
y2
y3
y4

z1
z2
z3
z4

and it would use a DATA statement that would look like this:

500 DATAw1,x1,y1,z1,w2,x2,y2,z2,w3,x3,y3,z3 ...

All would be fine until you wanted to insert a new "w" word
between w1 and w2. To keep the words in order and in the same
columns, it would be necessary to re-type all of the wwords fol­
lowing w1 - some fun!

On the other hand, using Method 2 and putting the vertical
groups in separate DATA statements makes the task simple. This
example uses just two columns for simplicity:

35 N = 1
40 READE$
45 IF E$ <> "A" THEN 40
50 FOR X = 1 TO N
55 READ A$
60 IF A$ = "999" THEN 120
65 NEXT X
70 READE$
75 IF E$ <> "B" THEN 70
80 FOR X = 1 TO N
85 READ B$
90 NEXT X
95 N = N + 1
100 RESTORE
105 PRINT A$,8$
110 GOTO 40
120 ... (continue program) ...

500 DATA A,w1,w2,w3,w4,w5, ...
505 DATA w23,w24,w25, ... ,999
510 DATA B,x1,x2,x3,x4,x5,x6, ...
515 DATA x23,x24,x25,x26, . . . ·

158 • VIC 20 Programmer's Notebook

Fig. 10-4. Flowchart for buried data, special method.

The flowchart in Fig. 10-4 will help you follow the action in this
routine. Note how much easier it is to add, delete, and/or
change items in these DATA statements. You might also take a
good look at the way in which variable N is used. With each pass
through the loop, data is read until it gets to the first value that
has not been printed.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[:

[

[:

Notes: Data Management e 159

BUBBLE SORT

It is often desirable, at least, to put lists of various types into
some kind of logical order. Then, too, some types of lists must be
ordered and reordered repeatedly when they are used for
several purposes.

A mailing list, for example, may be sorted (ordered) by ZIP
codes for the benefit of postal regulations and then re-sorted
alphabetically for membership checking. Every program used for
handling lists should have a sorting subroutine built into it. Of
course, such lists must be sorted again every time a new name is
added or an old name is deleted.

Listing

(Assumes the list is in array A$(N) with N being the largest sub­
script.)

500 FOR J = 1 TO N - 1
510 FORK = J + 1 TON
520 IF A$ (J) < = A$ (K) THEN 560
530 L$ = A$ (J)
540 A$ (J) = A$ (K)
550 A$ (K) = L$
560 NEXT K
570 NEXT J
580 RETURN

Fig. 10-5 shows a flowchart for the bubble sort routine.

Analysis

500 sets a loop to count to 1 less than the array size.
510 sets a loop to count one more than the first loop throughout the

range.
520 if the upper item is equal to or smaller than the lower item, skips

to the next comparison.
530-550 swap the upper for the lower item if the latter is smaller.
560 checks the K-loop for completion.
570 checks the J-loop for completion.
580 transfers back to the main program.

160 • VIC 20 Programmer's Notebook

Fig. 10-5. Flowchart for the bubble sort routine.

Use

This bubble sort subroutine orders the list (array) from low to

high. A numeric list will begin with the lowest number and pro­

gress to the highest. An alpha list will begin with the A's. A

mixed alphanumeric list will begin with the numbers (in order)

followed by the ordered alphabet.
It is advisable for you to check the functioning of a sorting sub­

routine whenever you write one into a program. To avoid the

tedium of entering test lists manually, see the earlier note on

generating random strings.

Variations

This subroutine can be made to reverse the order of the sorted

list. For high-to-low sorting, simply change the less-than symbol

(<) in line 520 to a greater-than symbol (>).

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r Notes: Data Management • 161

r
[

[,

[

[

[

[

[Fig. 10-6. Flowchart for the Sheii-Metzner sort routine.

r

L

SHELL-METZNER SORT

The Sheii-Metzner sorting technique is not used as frequently
as the bubble sort, perhaps because it is somewhat more com-

162 • VIC 20 Programmer's Notebook

plex. However, it does the job faster than the bubble sort. The

time difference is slight for short lists but it becomes quite signif­
icant with lists that contain hundreds of entries.

Listing

(Assumes a list in array A$(N} with N being the largest sub­
script.}

500M=N
510 M = INT (M I 2)
520 IF M = 0 THEN RETURN
530 J = 1
540K=N-M
550 I = J
560 L = I + M
570 IF A$ (I) < = A$ (L) THEN 630
580 H$ = A$ (I)
590 A$ (I) = A$ (L)
600 A$ (L) = H$
610 I = I - M
620 IF I > = 1 THEN 560
630 J = J + 1
640 IF J > K THEN 510
650 GOTO 550

Fig. 10-6 shows a flowchart for the Sheii-Metzner sort routine.

Use

This Sheii-Metzner sort is much more efficient than the bubble

sort. The amount of time that it saves increases at an exponential
rate as. the number of sorted items increases. For example, as a

rough approximation, it requires only one-half of the bubble
sort time for 10 to 15 items, one-fifth for 100 items, one­
twentieth for 500, and so on.

Tht1_,_efficiency of a sorting routine is determined by the num­
ber of times each item is compared with the others and the num­
ber of times their positions in the array must be switched. The

bubble sort requires that each item be compared with every

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r:
f'

[

[

[,

[

[,

[

[.

Notes: Data Management • 163

other item in the list. The 5-M sort requires fewer comparisons
and, with an identical list of items, fewer switches.

It does take a little longer to type the 5-M sort into your pro­
gram. With a hundred or more items, however, you will more
than make up that time after a few runs of the program.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

r
[

[

[

[

[

[

[

[

[

[

[

CHAPTER 11

Sound Generation

Your VIC 20 is such a versatile machine that all ofthe variations
of its great capabilities have yet to be explored. In preceding
chapters, we have been able to do little more than skim the sur­
face of color, for example. It is unfortunate but true that try as
we might, we will be able to do even less on the subject of sound
here and in the next chapter. That gives you an indication of the
potential of VIC 20 sound.

Many computers can produce only a limited type and number
of sounds without add-on devices and intricate programming
(usually in machine language). On the other hand, built right
into the VIC 20 are three tone generators and a noise generator,
all of which can be controlled with statements in plain ole BASIC.
It is possible, even, to produce the effect of a fourth (and fifth?)
tone generator!

THE CONTROLS

Well, we can't do it all but let's begin by talking about the
basic controls we will use. You can, of course, turn the sounds on

165

166 • VIC 20 Programmer's Notebook

and off, adjust the volume, and set the tone (frequency) of the
sound generators. Each of these functions can be controlled
independently.

Volume

The VIC 20, like any sound generator, has a volume control
with an ON/OFF switch. Search as you might, however, you will
find no familiar knob to twist. The volume is adjusted with
POKEs to address 36878. The values are limited to a range of 0 to
15 which have this effect:

0 =off
1 = lowest volume

15 = highest volume

Let's hear how that works. RUN the following program:

10 POKE 36875, 222
20 FOR X = 1 TO 15
30 POKE 36878, X
40 FOR Y = 1 TO 300 : NEXT Y
50 NEXT X
60 POKE 36878, 0
70 POKE 36875, 0

For now, ignore lines 10 and 70 (actually, they control the tone,
but we will see that later). Lines 20 and 50 set up a FOR/NEXT
loop to increment the value of X from 1 to 15 (the value for the
volume control). Line 30 POKEs the value of X into 36878, the ad­
dress of the volume control. Line 40 is a simple delay loop to
"stretch" the duration of each step and line 60 turns the volume
OFF after the main loop concludes.

When this program is RUN, you will hear a tone that increases
in volume in step with the value of X. Experiment with the pro­
gram a bit to become familiar with the volume control. For
example, if you insert

25 PRINT X

you can see the values being POKEd into the volume location.
Change line 20 to read FOR X = 15 TO 0 STEP -1 in order to de­
crease the volume from a loud beginning. (If this is done, line 60

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
L
[

[

L
r
[

[

[

[

[

['

Sound Generation • 167

is not needed ... right?) The "300" in line 40 can be changed to
increase or decrease the speed of volume change.

Actually, unless the volume is a specific part of the sound effect
you are creating, the general practice is to use just two volume
commands:

POKE 36878, 0 (= OFF)
POKE 36878, 15 (= ON)

Then, the volume control on your monitor/tv is used to adjust
the loudness as desired. In order to simplify our discussion, we
will use the "volume" control in this way.

Be aware that this control only regulates the amount of sound
signal getting to your monitor/tv. It does not turn ON or OFF any
of the sound generators.

Tone

As previously stated, your machine has three tone generators.
They are operated exactly alike and may be used together or in­
dividually because each has a different address. These generators
do cover a different range of frequencies (tones) that overlap.

The three memory addresses used for control are 36874,
36875, and 36876. The first (- 74) produces the lowest tones and
the last (- 76) produces the highest. Each generator spans a
range of three octaves and has a two octave overlap with the
adjacent generator(s) in this manner:

(HIGHESn 36876: OCT 3 OCT 4 OCT 5
36875: OCT 2 OCT 3 OCT 4

(LOWEST) 36874: OCT 1 OCT 2 OCT 3

As indicated, all three tone generators are controlled exactly
alike, with POKEs into the desired memory locations: 36874,
36875, or 36876. We will use 36874 in our examples but keep in
mind that the other two addresses (generators) function the
same way.

The values POKEd may range from 0 to 255. All values from 0
to 127 turn the generator off so the convention is to use the
value of 0 to do so and ignore the others in that range. We will
use only the 0 in our examples.

We are left, then, with values 128 through 255 which turn the
generator on and set the tone. The higher the number you
POKE, the higher the frequency will be. All of the numbers in this

168 • VIC 20 Programmer's Notebook

range will produce a tone in each of the generators but a given
value will not produce the same tone in each one. You should
not be surprised to find that values in the 2SOs in 36876 are in­
audible - exactly where the tone cuts off will depend on the
high frequency capability of your monitor/tv sound system and
of your ears!

In order to get a feel for the ranges of the tone generators, key
in this program:

10 POKE 36878, 15
20 X= 128
30 POKE 36874, X
40 PRINT X;
50 FOR Y = 1 TO 200 : NEXT
60X=X+1
70 IF X < 256 THEN 30
80 POKE 36878, 0
90 POKE 36874, 0

Line 10 turns on the volume. Note that both the volume and the
generator must be on or no sound will be heard. Line 20 sets the
beginning value at 128, which is POKEd into the lowest sound
generator. In line 40, the value of X is PRINTed for your refer­
ence. Line SO is a simple delay that keeps the tone on while it
counts to 200. Lines 60 and 70 increase the value of X by one and,
if it is less than 2S6, transfer the execution back to line 30.

When 2S6 is reached, lines 80 and 90 turn the volume and the
generator off. Take note of the fact that either of these lines
may be omitted with no apparent effect. If the volume (36878)
only is turned off, the generator continues to run even though
the sound cannot reach the monitor/tv. If the generator (36874)
only is turned off, there is no sound to reach the speaker through
the open volume control. For this reason, it is good practice to
close down both before leaving a program or subroutine. Of
course, if both lines are omitted, the last tone continues after the
program ends.

You will find it interesting to change the tone generator (line
30) in order to hear the entire range of which the VIC 20 is
capable. Changing the 200 in line SO will change the duration of
the tone, of course.

Noise

You may believe that there is quite enough noise in the world.
If so, be prepared for a SlJrprise because you will find that the

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

r
l
[

[

[

[

[

[

[

[

[

[

Sound Generation • 169

noise you are about to add is constructive rather than destruc­
tive.

The fourth generator in your VIC 20 makes a special kind of
sound. It is called "white noise" and sounds something like your
tv set when you switch to an unused channel. The big difference
here is that you have control over the noise, including its pitch.
As you will see, this is very valuable in creating certain kinds of
sounds.

The noise generator is controlled through address 36877. The 0
through 255 values POKEd at that location affect the on/off and
pitch exactly as they do in the tone generators. You can experi­
ment with the noise generator by using its address (36877) in the
preceding program.

In practice, the noise generator is used most often to create
sound effects - explosions, phaser guns, wave action, and the
like. Such effects may or may not require the simultaneous
operation of a tone generator but they usually do require
manipulation of the volume control. This fundamental program
is modified in many ways to create a wide variety of sounds:

10 POKE 36877, 235
20 FOR X = 15 TO 0 STEP - 1
30 POKE 36878, X
40 FOR Y = 1 TO 70 : NEXT Y
50 NEXT X
60 POKE 36877, 0

Experiment with this program by changing the frequency of
the noise (line 10), the loop parameters (line 20), and the dura­
tion (line 40). Try adding one or more tone generators as in these
lines:

15 POKE 36875, 135
65 POKE 36875, 0

SUMMARY

The following chapter contains a number of examples of sound
creation with the VIC 20. All of them are based on the informa­
tion given previously. They can be understood and, thus, modi­
fied for your needs by referring back here as necessary.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

[

[

[

[. .
[

r
[

[

[

[

CHAPTER 12

Notes: Combining Graphics,
Color, and Sound

Graphics, color, and sound have been discussed and used in
Chapters 4, 9, and 11. In fact, they have been used throughout
the book because it is a rare program, indeed, which does not in­
corporate one or more of these features. The "trick," if there is
one, is in combining them within a program.

You can mix graphics, color, and sound quite successfully if you
remember one principle. Our old human minds, in spite of their
apparent speed now and then, are really slow in many respects
when compared wi:th the VIC 20. As an example, a word or de­
sign that the VIC 20 flashes on and off the display will go right
over our heads unless we build in a delay to give us time to
absorb it.

Consider that an animated graphic would streak across the
screen much too fast unless we insert a bit of a delay. If a sound is
not lengthened, it just seems like a "pop" to us. A quick flash of
color may as well be colorless for all practical purposes. Because
we must slow down the VIC 20, as it were, there is plenty of time

171

172 • VIC 20 Programmer's Notebook

to do other things. There is no point in having the machine sit
there and count like a dunce when it could be making a sound
effect, changing a color, and/or moving a graphic!

Correlative to the principle of our slowness is the fact it often
seems to us that the VIC 20 can do several things at the same
time. Of course, it cannot actually do two things at once- it just
appears that way. In any case, the important point is that you
can usually stick another command or two here and there in an
existing routine, and not discern any difference in the routine's
execution. Of course, those "extra" commands can be for color,
sound, graphics or whatever.

As indicated earlier, there is no trick to manipulating these
three functions together. The basic technique is to "interleave"
the commands for the functions we want. The only timing prob­
lems this process may cause is that some of the delays may have
to be shortened a bit.

The recommended method of interleaving these functions is to
build just one and then stick the others in where they belong. For
example, first build an animated graphic routine, then go back
and interleave color commands, and finally, go back and add the
sound commands. The order in which the ultimate routine is
built is not important- just do one thing at a time to reduce the
chance of confusion and the possibility of hours spent on
debugging.

The technique is not quite as simple as it may sound. lfthe rou­
tine has any complexity, you will have to do some trial and error
experimentation -juggling -to get the effects just as you want
them. That is only to be expected. When did you write the last
program that ran perfectly the first time? - probably not since
you wrote "10 PRINT 3 + 5 :: 20 END."

In building the types of routines we have been discussing, you
will be doing much RUNning, LISTing repeatedly. The task will be
much quicker if you use the little "Builder" utility program given
in the section entitled How To Use This Book.

Beyond what has been said, there is not much to add in terms
of "how-to-do-it." In the following Notes, we will just present a
few examples and analyze each briefly. The potential number of
variations is all but limitless. To avoid undue complications, the
form of the Notes is changed a bit in order to simulate the way
you would build the given routine -graphics, then color, then
sound. The fact is that these routines were built exactly that way.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

r
[

[

[

r
[

[

[

[

r

[

Notes: Combining Graphics, Color, and Sound • 173

MUSICAL INTERLUDE

This first routine includes no complex actions in order to better
illustrate the interleaving process. Moreover, it provides
examples of several interesting techniques - storing changes in
DATA statements, parsing two concatenated items, and cursor
positioning. In this case, first we will generate the sound and
then add a bit of graphics.

Program Listing (Sound)
5 POKE 36879, 8
20 G = 36875 : V = 36878
40 DATA2254,2254,2354,2354,2374,2374,2358
42 DATA2324,2324,2314,2314,2284,2284,2258
44 DATA2354,2354,2324,2324,2314,2314,2288
46 DATA2354,2354,2324,2324,2314,2314,2288
48 DATA2254,2254,2354,2354,2374,2374,2358
50 DATA2324,2324,2314,2314,2284,2284,2258

100 POKE V, 15
130 FOR X = 1 TO 42
140 READF$
160 POKE G, VAL (LEFT$ (F$, 3))
170 FOR Y = 1 TO 100 * VAL (RIGHT$ (F$, 1)) : NEXT
180 POKE G, 0
190 NEXT X
200 POKE V, 0

Analysis
5 sets the screen color (black).
20 sets variables to the tone generator and the volume control ad­

dresses.
40-50 contain the sequential concatenated frequency and duration

information for the tune (the first three are frequency and the
last one is the duration).

100 turns the volume control on.
130 sets a 42-count loop for the notes.
140 reads a (string) datum with each pass through the loop.
160 determines the value of the three left-most characters and POKEs

it into the tone generator.
170 determines the value of the right-most character and counts the

correct delay (duration of the note).
180 turns the tone off.
190 completes the note-count loop.
200 turns the volume off.

174 • VIC 20 Programmer's Notebook

Notice that the duration of each tone is stored with its fre­
quency. This makes for shorter data statements and it is much
less confusing to write in than are separate items for each. Hav­
ing to parse the data before use does not cause any discernible
delay. Notice, too, that the DATA is read as strings in order to
make the parsing easier. Of course, it has to be converted to
numerics (with the VAL function) before it can be used in the
POKEs.

Now, let's make the routine a bit more interesting by adding
the words in a manner similar to that used in the old movie
"sing-along."

Program Listing (Words Addition)

10 DIM A$ (42)
30 DATATWINK,TWINKLE,LIT,LITTLE,STAR,HOW,I,WON,WONDER,

WHAT,YOU,ARE
32 DATAUP,A,ABOVE,THE,WORLD,SO,HIGH,LIKE,A,DIA,DIAMOND,

IN,THE,SKY
34 DATATWINK,TWINKLE,LIT,LITTLE,STAR,HOW,I,WON,WONDER,

WHAT,YOU,ARE
110 FOR X = 1 TO 42: READ A$ (X): NEXT
120 PRINT II I

150 PRINT II SPC(95) A$ (X)
210 PRINT II

Analysis

10 dimensions variable A$ to hold the words.
30-34 contain the words in DATA statements.
110 READs the words sequentially into array A$(X).
120 sets the PRINT color to yellow.
150 clears the screen, positions the cursor, and PRINTs the word cor­

responding to the note to be sounded.
210 clears the display after the "performance."

GALLOPING HORSE

Have you ever noticed in western movies how the horses make
a different sound when they cross a bridge or a stretch of rock?
Now, you can do the same thing. First, we will sketch a little
horse moving across the screen.

[

[

[

[

[

[

[

[

[

[

[

[

[

[_

r
[

['

[

[

L

[

[

[

L
[

[

[

Notes: Combining Graphics, Color, and Sound • 175

Program Listing (Graphics)

290 POKE 36879, 8 : SC = 256 * PEEK (648)
310 PRINT CHR$ (147);
330 FOR Y = 0 TO 21
340 POKE SC + Y + A - 1, 32: POKE 5C + Y + A, 94
400 FOR X = 1 TO 100 : NEXT
430 NEXT Y
440 A = A + 22 : IF A > 500 THEN 460
450 GOTO 330
460 PRINT CHR$ (147)

Analysis

290 sets the screen color and sets variable 5C equal to the first ad-
dress of the Screen RAM (whatever its location).

310 clears the screen and homes the cursor.
330 sets up a 22-count loop.
340 POKEs a blank and a (horse) character which move to the right

with each pass of the loop.
400 delays for a count of 100.
430 continues the loop until conditions are satisfied.
440 adds 22 to variable A (putting the horse down one line) and

transfers to 460 when the horse gets to the last screen line.
450 transfers back to 330 to move the horse across the next screen

line.
460 clears the screen and homes the cursor.

Well, that is a pretty crude horse - or is it a series of horses
crossing successive screen lines? In any case, the animation is
good enough to illustrate how sound can be mixed with
graphics.

Program Listing (Sound Addition)

300 52 = 36875 : v = 36878
320 POKE V, 15: F = 240
350 FOR X = 1 TO 3
360 POKE 52, F
370 POKE 52, 0
380 FOR Z = 1 TO 50 : NEXT
390 NEXT X
410 F = 240
420 IF PEEK (197) <> 64 THEN F = 248
470 POKE V, 0

Analysis
300 sets variables to the sound and volume addresses.
320 turns the volume on and sets variable F equal to 240.

176 • VIC 20 Programmer's Notebook

350 sets up a 3-count loop.
360 sets the sound generator to the value in F.
370 turns the sound generator off.
380 delays for a count of 50.
390 completes the 3-count loop.
410 sets F equal to 240 (in case it has been changed).
420 changes the value in F if any key is pressed.
470 turns off the volume control.

Now, the horse gallops along and you can hear the clomp of
his hoofs. If you press a key, the sound will change as though the
horse were crossing a bridge.

This program was put together just as indicated previously: the
horse was programmed and, then, the sound statements were
interleaved. In writing a program mixing sounq, color, and/or
graphics, if things get too complex, you can develop any of the
parts independently and put them together after you have the
result you want. Even so, you still will have to do some fine-tun­
ing to make things mesh properly.

JUMPING JACK

In this routine, we begin with a simple animation of a fellow
doing a jumping jack exercise. Then we add color and, last,
sound. If you key in this little program in the parts as indicated,
you will see how it is improved by each addition and how the in­
serted lines interact.

Program Listing {Graphics)

5 POKE 36879, 8 : POKE 646, 3
10 SM = 36881

100 PRINT II WD-U!ill m ll!liEllJ(S times)" : D = 1
110 FOR X = 1 TO 31
160 IF X I 2 = INT (X I 2) THEN PRINT SPC(10) "mlii-IJ

l'fM•l;I-D millS" : GOTO 180
170 PRINT SPC(10) II miB-1!1 Wil!lfi.J llfllJ!Il;l-11 Uli!!l-1!.1

miB-D"
180 PRINT 5PC(11) II Will-Ill fiiZ.SI!:W WiiJ-1!1"
190 IF X I 2 = INT (X I 2) THEN PRINT SPC(10) "G;!D-L1 .. iiHI!lJ

miBW m!B-I!l ~ EliW-I!l ~ IWID-I!l
~" : GOTO 220

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r

[

[i

[

L
[

r
[

[

[

[

[

[

Notes: Combining Graphics, Color, and Sound • 177

200 PRINT SPC(10) "llf\'JI•HIS IOiil-IIft '"''d•l;I-J3 mrii-I!J
tll:iEil GilD-I!J tll:iEil mrii-I!J tll:imil"

220 FOR Y = 1 TO 150 * D : NEXT
240 POKE SM, 22 : FOR Y = 1 TO 50 : NEXT : POKE SM, 24
250 NEXT X
260 PRINT SPC(10)" IOi@lfJ(3 times)" : PRINT SPC(11) ·~
~ Wl:liHI Emii-D" : PRINT SPC(10) "IOiijl•Sift
Wl!Iii(@J IIWJ-11 f1:Z•IHI t-1UIIt Wl1HI Emil-D ..

270 FOirY ,;--1 TO 3000 : NEXT

Analysis

5 sets screen and printing colors.
10 sets the variable to the address of screen "jump" location.
100 positions the cursor and sets the time delay variable.
110 sets a 31-count loop for the number of jumps.
160 on every even-numbered jump, PRINTs the arms up.
170 on other (odd-numbered) jumps, PRINTs the arms down.
180 PRINTs the body.
190 on even jumps, PRINTs the legs apart and moves the cursor up

three lines (ready to PRINT the next time).
200 on odd jumps, PRINTs the legs together and moves the cursor up

three lines.
220 counts a delay.
240 moves the entire screen up and then down to simulate jumping

action.
250 completes the jump-counting loop.
260 PRINTs the figure in a prone position.
270 counts a delay.

That is quite a little fellow, but he creates little interest until he
stops to rest. Or did he pass out? Well, let's add some color and
see if that helps.

Program Listing (Color Addition)

130 IF X > 20 THEN POKE 646, 4 : D = 2
150 IF X> 25 THEN POKE 646, 5: D = 4

Analysis

130 when the jump-count exceeds 20, changes the color to purple
and slows the jump rate.

150 when the jump-count exceeds 25, changes the color to green and
further slows the jump rate.

178 • VIC 20 Programmer's Notebook

That is an improvement. We know the guy apparently is not
feeling too well. Notice how the color statements were stuck
right in there with no discernible difference in the execution of
the routine. Obviously, slowing the rate also added to the effect.

For the final touch, let's turn this routine from a silent movie
into one with sound. In practice, sound could have been added
before the color.

Program Listing (Sound Addition)

15 52 = 36875 : v = 36878
105 F = 240 : POKE V, 15
120 IF X> 15 THEN F = 255 - X
140 IF X > 22 THEN F = 260 - X * 3
210 POKE 52, F
230 POKE 52, 0
280 POKE V, 0

Analysis

15 sets variables to the addresses of a tone generator and the
volume control.

105 sets the initial frequency (tone) and turns the volume on.
120 when the jump-count exceeds 15, decreases the frequency with

each jump.
140 when the jump-count exceeds 22, decreases the frequency at a

faster rate.
210 turns the tone generator on to the designated frequency.
230 turns the tone generator off.
280 turns the volume control off at the end of the routine.

"THAT" DOG, AGAIN!

Do you recall the little dog we created in Chapter 4 to walk
across the screen? Well, here he is again. We will use him to il­
lustrate the addition of sound and color to an existing graphics
routine. First, let's re-create the dog.

Program Listing (Graphics)

[

[

L
[

[

[

[

[

[

[

[

[

25 POKE 36879, 8 : POKE 646, 1 [
40 A$= "Gi!D-elllh!JUljl-liJIIillliUljl-liJGiiDSI:liW-1!
~ GilD-1! ~ Gi!D-1! ~ GilD-1! ~,

50 PRINT " Gi!D-e!iJ"
60 PRINT "I!.J ~ I!.J ~ I!.J ~, [
70 FOR X = 1 TO 25

[

f.

[

[

[

[

r
[

[

[

Notes: Combining Graphics, Color, and Sound • 179

80 C$ = II • .,iN!J:W" + A$
90 IF X < 4 THEN C$ = MID$ (A$, 5 - X, 2 * X)
100 IF X = 15 THEN FOR Y = 1 TO 500: NEXT: C$ = "ll:h'J!•lji-I!JI"

+ A$
110 IF X> 21 THEN C$ = " • .,:J4!J1" + LEFT$ (A$, 25 - X) + RIGHT$

(A$, 25 - X)
120 PRINT C$;
130 FOR Y = 1 TO 100 : NEXT
140 NEXT X

Analysis

25 sets the screen and PRINT colors.
40 sets A$ equal to the dog design plus 4 left-cursor movements.
50 clears the screen and homes the cursor.
60 moves the cursor down three lines.
70 sets a 25-count loop to move the design.
80 sets C$ equal to a space plus the design.
90 changes the design as it comes from the left border.
100 on a count of 15, inserts another delay and makes a small addi-

tion to the design.
110 changes the design as it "goes behind" the right border.
120 PRINTs the design.
130 counts a delay.
140 completes the loop.

Now, we are back where we were in Chapter 4. Let's add a bit
of color.

Program listing (Color Addition)

95 IF X = 14 THEN PRINT II Wlll-11" ;
125 PRINT II~, ;

Analysis

95 changes the color on a count of 14.
125 returns the color to the original white.

The addition of sound will complete the picture.

Program listing (Sound Addition)

30 s = 36874 : v = 36878
35 POKE V, 15
122 IF X = 14 THEN FOR Y = 1 TO 150: POKES, 202 + Y /140: NEXT:

POKES, 0
135 POKE S, 240 : POKE S, 0 : FOR Y = 1 TO 18 : POKE S, 253 : POKE S,

0: NEXT
150 POKE V, 0

180 • VIC 20 Programmer's Notebook

Analysis

30 sets variables to the addresses of the tone generator and the
volume control.

35 turns the volume on.
122 on the count of 14, inserts an extra delay and generates a sound.
135 generates a sound with each movement of the design.
150 turns off the volume.

BOUNCING BALL EXPLODES

The final example of a graphics/color/sound routine is longer
than the preceding ones. Here, a green ball bounces against a
wall and when it falls to the ground, it explodes with flashing
colors and sound effects.

We won't analyze this routine in detail- just enough to point
out the most interesting techniques incorporated in it. You will
find that the results make it worth keying in this listing.

Program Listing

10 co = 37888: 5C = 4095
20 52 = 36875 : NO = 36877 : V = 36878
30 POKE 36879, 8

100 PRINT "Eii!il-wiJI!iiiii-Q";
110 POKE V, 15
120 FOR Y = 1 TO 21 : POKE 5C + 22 *X, 97: NEXT
130 FOR Y = 1 TO 19: PRINT: NEXT
140 FOR X = 1 TO 19
150 PRINT 5PC(X)" l:r.:i;:r.il,..,w:r.S't""':W,. ··HN't:W Eii!ii-I!J ~ mlil-1!
~ Eiilil-1!1 Eiilii-I!J ~··

160 POKE 52, 254 - X
170 FOR Y = 1 TO 15 * (5 + X) : NEXT
180 NEXT X
190 POKE CO + 21, 2: POKE 52, 175
200 D = 2 : G05UB 700
210 PRINT 'l;[•h'ii:W";
220 FOR X = 1 TO 20
230 Z = X : IF Z > 9 THEN Z = 9
240 PRINT 5PC(20 - Z) " .. -J#I"'t:W .. -Jil-S't:W I!J ~ I! ~ I!
~ IEiiiil-m l:"liJD-I!J ~ ..

250 POKE 52, 234 + X
260 IF Z = 9 THEN Z = 23
270 FOR Y = 1 TO 15 * (25 - Z): NEXT
280 NEXT X

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

['

[I

[

[

[

[

[:

[

Notes: Combining Graphics, Color, and Sound • 181

290 POKE 52, 0
300 PRINT 5PC(11) "Wil!II-IJ I.SliW-I!J I.SliW-I!J tiiW"
310 G = 52: F = 130: D = 5: G05UB 700
320 PRINT 5PC(11) "I.SliWB I.SliW-I!J tiiW"
330 G = NO : F = 240 : D = 7 : G05UB 700
340 PRINT 5PC(10) "WD-D WD-IiJ ..,l't:rl''"ll~t1-;wjl-ll WD-1\1

Blill-11 mwm WD-D WD-D I.SliW-Dml ~
HliiH!J EmB-I!J tiil:liii.SliW-I!J tiil:lil''

350 D = 3 : G05UB 700
360 PRINT 5PC(9) """'11:1,..,1'.,.!1•"'"'1;""'1-llfi=t;'S't:W fiiz.!'t:W fiiH't:W I.SliW­
um:J~"

37o PRINT 5PC(9) "lttm•1;1-IJ WD-D 11:1\'11•1;1-11 WD-D
g~f!UWD-D I.SliW-Dml ~ HliiH!J 11:1M•1;1-IJ
---.-... ~ I.SliW-I!J tiil:liJI.SliW-I!J tiiW" : G05UB

380 PRINT 5PC(8) "I.SliWW " 5PC(5) "I.SliW-£11 " : PRINT :
PRINT 5PC(8) "11:1\'JI•HI-IiJ" 5PC(5) "11:1\'11•1;1-liJ I.SliW-1!1
l!liWEliJD-I!II't;JOi;II.SliW-I!JI't;JOi;l": D = 8: G05UB
700

400 FOR X = 1 TO 7
410 POKE 646, X
420 FOR Y = 1 TO 3 : PRINT 5PC(8) "fiili.l't:W (7 times)" : NEXT :

PRINT " miB-I!J tiil:liJ (4 times)"
430 D = 1 : G05UB 700
440 PRINT 5PC(8) "I.SliWW" 5PC(5) "I.SliW-£11" : PRINT 5PC(9}

"l'tM•HI-IIfiili.l't:W fiiz.!'t:W fiil-I't:W I.SliWtiml ~ .. :
PRINT 5PC(8) "WJ:Iillill't\'d•HI-IJ Bli!J-IiJ 11:1M•1;1-II
Ulill-1!1 fiU't:W WD-D I.SliW-Dml ~ WD-1!1
11:1\'JI•HI-IJ 11:1\'11•1;1-liJ I.SliW-I!JI't;f"i;II.SliW-I!Jl!liW
miDI!l~··

450 D = X : G05UB 700
460 NEXT X
470 POKE NO, 0 : POKE V, 0
480 PRINT"~ ..
500 GOTO (continue program)
700 POKE G, F
710 FOR Z = 1 TO D * 100 : NEXT
720 POKE G, 0
730 RETURN
As the ball goes higher into the air, its speed decreases just like

the real thing (line 170) and, on the way down, its speed in­
creases (line 270). The sound changes accordingly. When it
reaches the ground, the ball changes color (line 300) and it
explodes as blast streaks shoot out accompanied by sound (lines
340-380).

You may find lines 400 through 460 of special interest. The
initial blast is followed here by a series of additional explosions
with sounds, flashing streaks, and changing colors.

182 • VIC 20 Programmer's Notebook

This routine was designed just like the others: the picture was
created then the color and sound were interleaved separately.
Follow this procedure and all that will be left to do is some fine­
tuning of the effect.

[

[

[

[

[

[

[

[

[

[

[

[_

[

L

r
[:

[

r:
['

[

[

L

CHAPTER 13

Program Statement
Structure

PROGRAM STATEMENTS IN MEMORY

If you intend to do more than casual programming, you will
find it very useful to know how the program statements are
stored in your VIC 20. Not only will such knowledge help you to
make more efficient use of available RAM, but it will be a real
time and effort saver in many advanced situations.

Once again, let's use the VIC 20 as well as this text to get a
handle on this topic. It may pain you a bit to do so, but remove
any add-on memory that you may have in place. Then, your
stripped-down VIC 20 will have the same addresses you find
here. (For later use with additional memory, translate these
addresses to match the amount of memory as discussed in
Chapter 5.)

Every program statement in memory can be divided into four
segments with these names and space requirements:

LINK LINE# TEXT END

(2) (2) (varying) (1)

183

184 • VIC 20 Programmer's Notebook

The LINK is a two-byte number that points to the next line; i.e.,

the link on line 10 will point to the location of line 20. This
number is in the standard form of low byte followed by high

byte. The purpose of the link is to enable your VIC 20 to quickly

locate a line number. For example, when the program line GOTO

1120 is executed, the search begins at the start of BASIC and
jumps from one link to the next until it finds one that is followed

by 1120. If there were no links, such a search would have to
check every memory location until 1120 was found- a much

slower process. Altogether, a great deal of time is saved. Con­
sider all the line finding caused by the multitude of GOTOs,
GOSUBs, THENs, inserting, deleting, editing and so on.

The line number is necessary to keep track of the order of pro­
gram execution. It, too, is kept in low byte/high byte form.

The TEXT is not stored on a letter-for-letter basis as you type it

in. When they are not within quotation marks, BASIC "key­
words" are stored as tokens (codes or numbers) that stand for

those words. A keyword may be a command (LIST, RUN); an

operator (AND, OR); a statement (CLR, DATA); or a function

(FRE, RND). A complete list of VIC 20 keywords and their tokens is
found in Appendix B. All other text characters are stored as ASCII

values (see Appendix G). The use of keyword tokens saves a con­
siderable amount of memory space since, for example, the

number 153 requires only one byte because it is not greater than
255, while "PRINT" takes five bytes.

The final segment of a program statement is the END or term­
inator. This requires only one byte which is always a zero.

Let's put all this in perspective with an example of "real"

statements. We will be talking about the following program in
memory, so load it into your 5K machine exactly as shown (and

perhaps you should SAVE it because we will be using it quite a
bit):

10 PRINTCHR$(147)
20 PRINT"THIS IS A TEST"
30 PRINT" PROGRAM"
245 PRINTTAB(10);:FORX = 4097T04099:PRINTPEEK(X);:NEXT
250 FORX=4100T04184
255 IFX/5 = INT(X/5)THENPRINT"
260 A$= STR$(PEEK(X))

"·
'

265 IFLEN(A$)<4THENA$ = " " + A$:GOT0265
270 PRINTA$;
275 NEXT
280 END

[

[

[

[

[

[

[

[

[

[

[

[

[

L
[

r
r.

[

r
[

L

[

[

['

[,

(,

L

Program Statement Structure • 185

When you RUN this program, the screen will appear as shown
in Chart 13-1 (without the numbers in parentheses). Note that
the four-digit numbers in parentheses are the addresses
(memory locations) of the first byte in each line. Thus, the byte
stored at 4105 is 52 and at 4106, it is 55.

links and line Numbers
Address 4097 is the beginning of the program- the first state­

ment- in this case, the line number 10. One way you know this
is because the third and fourth bytes hold the number 10 (high
byte is 0 x 256 = 0; low byte is 10; 0 + 10 = 10).

Looking at the contents of memory, we find a zero at 4108.
This indicates the end of the statement, so the next statement
must begin at 4109. Back at bytes 1 and 2 (the link at 4097 and
4098), the values are 13 and 16, respectively. Thus, 16 x 256 =
4096 and 4096 + 13 = 4109, which is where we already found
the beginning of the statement containing line 20.

The next link is in the first two locations of the second state­
ment- 4109 and 4110. Those numbers are low byte 35 and high
byte 16 which work out to 4131. Going down to 4131 and back­
ing up one address to 4130, we find a zero indicating the end of
a statement.

Just in case you are skeptical of the two bytes for line numbers,
PEEK at 4225 and 4226, where line number 260 is stored. There
you will find 4 and 1, respectively, which translate into 260. Of
course, you will want to look at a few bytes before and after
those to make sure you have the right ones.

There is one more point on links that you should check out.
The last statement (line 280) has a link of 191/16 or 4287. If you
follow that pointer, you will find that both 4287 and 4288 con­
tain zeros. A link of zero is the VIC 20's notation for the end of a
program. In fact, counting the end of statement zero at 4286,
there are three consecutive zeros- a sure end-of-program sign.

That should be enough on links and line numbers for you to
follow statements through any program. If you have trouble
converting these low-byte and high-byte numbers, you may wish
to review the pertinent sections in Chapter 3.

Tokens (Keyword Codes)

Take a look at the statement of line 10 again (4097-4108).
After the line number, you find the values 153, 199, 40, 49, 52,

186 • VIC 20 Programmer's Notebook

Chart 13-1. Screen Display From Example Program

THIS IS A TEST
PROGRAM

(4097) 13 16 10
(4100) 0 153 199 40 49
(4105) 52 55 41 0 35
(411 0) 16 20 0 153 34
(4115) 84 72 73 83 32
(4120) 73 83 32 65 32
(4125) 84 69 83 84 34
(4130) 0 55 16 30 0
(4135) 153 34 32 32 32
(4140) 32 32 80 82 79
(4145) 71 82 65 77 34
(4150) 0 87 16 245 0
(4155) 153 163 49 48 41
(4160) 58 129 88 178 52
(4165) 48 57 55 164 52
(4170) 48 57 57 58 153
(4175) 194 40 88 41 59
(4180) 58 130 0 104 16
READY

55, 41, and then zero, signaling the end. The 153 and 199 are

keyword tokens for PRINT and CHR$. The remaining numbers are
ASCII values for(. 1, 4, 7, and). In line 245, the 153 is PRINT, 163

is TAB(. 129 is FOR, 178 is TO, and so on. All the values higher

:than 100 are tokens. Indeed, they save a considerable amount of
memory.

There are, of course, other series of codes that extend beyond

100. You can distinguish between them by the way in which they
are used. Tokens, for example, are not found in link or line num­

ber locations nor are they PRINTed, POKEd, or PEEKed.

Insert and Delete
Further insight about the way your VIC 20 handles statements

may be found by "doctoring" the previous program and observ­

ing the results. What happens when you insert a line?- the best

way to find out is to try it and see. If you type

15 PRINT

and RUN the program, you will find that the VIC 20 has moved

everything after line 10 up in memory just far enough to put that
statement between lines 10 and 20. Of course, the links are

changed accordingly.

[

[

[

[

[

[

[

[

[

[

[

[

[

L
[

r:

r:

['

['

[

[

[

[

[

[

L

Program Statement Structure • 187

If, on the other hand, you delete line 20, the VIC 20 simply
does the reverse. It changes the links and lowers the upper part
of the program to fill the vacated memory locations.

A little more experimenting with that program will show you
that the same things happen when characters are inserted and
deleted within a line. The entire program expands or contracts to
meet the need. Of course, no line numbers are changed; how­
ever, statement locations do change and the links are modified
to track them properly.

APPLICATIONS

You will recall that it was stated that this knowledge would
come in handy for the advanced programmer. Well, you can use
this information even if you are not yet "advanced." Some of
the Notes in this book get right into program statement
modification.

First of all, you will now have some appreciation for what the
VIC 20 has to do when you insert or delete even a single charac­
ter in a line. Especially if that line is near the beginning of a long
program, a great deal of moving and switching is done. Now,
perhaps you won't be so impatient when there is a delay of a few
seconds before the READY sign comes up.

From previous discussions, you are aware that just as you can
PEEK into a memory location and determine the value stored
there, you can POKE new values as well. That fact leads to anum­
ber of interesting applications.

You know that you cannot CONTinue a program after it has
been STOPped if any editing has been done. One of the reasons
is that all variables have lost their values and there is nothing
with which to CONTinue. Now, you can do certain kinds of edit­
ing and still CONTinue or GOTO a given program line with
variable values intact.

Going back to the original "workhorse" program, RUN it and
then enter PRINT A$ (direct mode). Of course, the value 16 is
printed. If you were to delete the 7 in 147 in the first line in the
regular way (edit) and ask for A$, you would draw a blank. How­
ever, if you POKE 4106, 32, the seven will be replaced with a
blank and leave 14 in the parentheses. Now, you can still get the
value of A$, indicating that the variables are still there. Later,
you can return to the LISTing and DELete the space after the
four.

188 • VIC 20 Programmer's Notebook

Any part of a statement can be edited directly but the length
cannot be changed in this way. Normally, this restriction is an in­
convenience at most. You may even change the line numbers as
long as they are not referred to by a GOTO, GOSUB or the like. A
renumbered line LISTs in the same place as the original line.- a
situation that may confound users of your program. Some line
number changes will give startling results, so practice a bit to dis­
cover the limitations, such as not having a higher numbered line
before a referenced one.

Did you ever want to "hide" a piece of information in one of
your programs - your identification, perhaps? Load up our test
program and try tl;lis:

POKE 4124, 34 : POKE 4125, 0

LIST the program and you will find that you have lost part of line
20. RUN it to see that it is missing, indeed. If you examine the
PEEKs, however, you will discover that the last characters are still
there but they are not executed. The VIC 20 thinks the line ended
with the zero. Those characters could be your initials, the date,
or whatever and no one will suspect that they are there if you
don't overdo it.

You can, of course, POKE zeros into the two addresses of any
link and cause the program to end at that point. There is little
practical use for that procedure but a related one is quite in­
teresting. With the original program in the machine (not again!),

POKE 4097, 35

and RUN. You will see no difference in the operation of the pro­
gram. LIST it and you will not see line 20 - it simply does not
show up. Now, POKE 55 in the same location and both lines 20
and 30 will "disappear" even though they execute just as
before.

What you have done, of course, is to change a link to jump one
or more lines. The "skipped" lines function but do not LIST. This
technique is used in the next chapter. When you use it, be careful
not to jump a referenced line or your program will crash because
the VIC 20 won't be able to find that line number!

UTILITY PROGRAMS

[

[

[

[

[

[

[

[

[

[

[

[

[
On a more practical level, this chapter will conclude with three [

utility programs: Compress, Pack, and Renumber. They are given

[

r:
r:

[

[;

[

[

[:

[

L
[;

Program Statement Structure • 189

here because each one illustrates the application of the preced­
ing information. In addition, of course, each is very useful to any­
one who is writing or modifying programs.

These utilities are written entirely in BASIC. This means that
you can follow the action ec;~sily and modify it to suit your special
requirements. Another consequence of the language is that the
utility programs execute at the relatively slow speed of BASIC.
Even so, they perform their functions much faster than these jobs
can be done manually.

While these three utilities can be used independently, they are
most valuable when used sequentially. For example, Pack leaves
many spaces in a program and they should be eliminated by
using Compress.

The same procedure is used with each of these programs -
each must be loaded into the VIC 20 right along with the pro­
gram on which it is to operate. The steps of this procedure are:

1. LOAD the program to be Packed, Compressed, or Renum-
bered.

2. Enter: POKE 43, PEEK (45) : POKE 44, PEEK (46).
3. LOAD and RUN the utility.
4. After the run, execute the two POKEs as instructed.

As you will recall, step 2 moves the "beginning of program"
pointers (43/44) to the top of the previously loaded program
(45/46). This, of course, causes the utility to load above that pro­
gram.

Note, too, that just as promised earlier, the values in these pro­
gram listings are the ones you need for an unadorned (SK) VIC
20. If you have added memory, the value of 4097 must be
changed to accommodate that addition (review Chapter 5 for
details).

Compress

The Compress utility program does precisely what its name
indkates: it squeezes all the spaces out of a program: If your pro­
gram writing is done with spaces to make for easy reading, Com­
press will eliminate all except those in quotation marks and,
thereby, make your program take up less memory and execute
faster. It is especially useful after running Pack which leaves
plenty of spaces where it removes unnecessary links and line
numbers.

190 • VIC 20 Programmer's Notebook

You may enter the Compress program directly from Listing
13-1. As usual, check your typing carefully. Of course, you may
leave out the "easy reading" spaces in the listing or type it just as
shown and, then, squeeze them out with Compress, itself.

Looking at both the listing and the flowchart (Fig. 13-1) of the
Compress program, you will see three major sections. The first in­
cludes lines 100 through 210 and its purpose is to examine each
character in each line of the program. If it encounters a quota­
tion mark (34}, it skips along quickly until it finds a second one­
thus, not removing any spaces inside quotes. Any other spaces
(32), however, will send execution to the second and third sec­
tions.

The second section, lines 230-300, decrements (subtracts one
from) every link beginning with the current one and continuing
to the top of the program. When this is completed, lines
320-360, the third section, begin at the memory location where
the space was found and move the value in every higher address
down one location. Then, the execution goes back to the
examination of character after character, looking for another
space that is not in quotes.

Line 355, by the way, prints a dash on the screen every time a
space is removed. It has no real value except to reassure you that
Compress is working. Otherwise, you might begin to wonder
when you compress a long program and see nothing happening!

Renumber

Renumber is a very handy utility for the program writer/modi­
fier. Most of us write lines in increments of 10 or more and begin
with 10 or 100. We do that for good and sufficient reason, yet
we are left with large and irregular line numbers to carry in our
programs forever. Renumber will take care of that problem and
give you small, regular numbers for efficiency and good looks.

This Renumber program (Listing 13-2) does not simply change
the line numbers. It changes any referenced numbers within the
statements to match the new line numbers. Thus, every THEN,
GOTO, and GOSUB will reference the new lines so the program
can run properly.

Examination of the listing and the flowchart (Fig. 13-2) will
show you that this utility is divided into two major sections. The
first, lines 100-210, renumbers the lines according to the

[

[

[

[

[

[

[

[

[

[

[

[

[

L
[

r
[',

r
[:

[

[.

[

[

[

[

Program Statement Structure • 191

Listing 13-1. Compress Program

100 X = 4097 : T = PEEK(44) * 256 + PEEK(43) - 2
110 W = PEEK(X) : W1 = PEEK(X + 1)
120 FOR Y = X + 4 TO T
130 Z = PEEK(Y)
140 IF Z = 0 THEN X = Y + 1 : GOTO 110
150 IF Q THEN 180
160 IF Z = 34 THEN Q = 1 : GOTO 190
170 IF Z = 32 THEN X1 = X: GOTO 240
180 IF Z = 34 THEN Q = 0
190 NEXT
200 POKE 43, 1: POKE 44, 16
210 T = T + 2: W = INT (T/256): PRINT "POKE 45," T - W * 256"

AND 46," W: END
220 REM - DECREMENT LINKS
230 W = PEEK(X1) : W1 = PEEK(X1 + 1)
240 W2 = W1 * 256 + W
250 IF W2 = 0 THEN 320
260 W2 = W2- 1
270 W4 = INT (W2/256) : W3 = W2 - W4 * 256
280 POKE X1, W3: POKE X1 + 1, W4
290 X1 = W2 + 1
300 GOTO 230
310 REM- MOVE ALL DOWN ONE
320 T = T - 1
330 FOR X1 = Y TO T
340 POKE X1, PEEK(X1 + 1)
350 NEXT
355 PRINT"- ";
360 GOTO 110

specifications you enter for starting number and increment. In
addition, it makes a very important record: the old line number,
D(C), and the corresponding new number, E(C). Without this
matched list of old and new, the referenced numbers could not
be corrected.

Lines 220-410 examine the program, character by character
and line by line, searching for GOTO (a token value of 137),
GOS.UB (141), and THEN (167). When one is found, the following
characters are checked to determine whether or not they repre­
sent a line number. If so, the corresponding new number is
POKEd in its place.

Usually, Renumber is used to lower the line numbers in a pro­
gram. When the new number is shorter than the old referenced
number, line 360 pads out the memory locations with spaces. If,

192 • VIC 20 Programmer's Notebook

DECREMENT THIS
AND FOLLOWING

LINKS

Fig. 13-1. Flowchart of compress utility.

NO
>--+1 MEM = MEM + 1

for some reason, you are changing to longer line numbers (1 00,

200 instead of 10, 20 or 1, 2), additional space must be made in

the references to lines. The simplest way to do this is to insert

one or two colons or spaces after each reference number; then

run Renumber and Compress the spaces away (or delete the

colons).
Of course, you could add a section to the program to take care

of longer line numbers automatically but it hardly seems worth

the extra baggage since this facility would be used so seldom.

The same thought applies to adding the ability to specify the old

line numbers with which the action is to begin and end.

[

[

[

[

[

[

[

[I

[

[

[

[

[

[

[

I
[

[,

[

r·.

[

[

[

[

[

[

L
[

Program Statement Structure • 193

Listing 13-2. Renumber Utility Program
100 DIM D(SO), E(SO): X = 4097 : T = PEEK(44)*256 + PEEK(43)- 2
110 INPUT "START #";A
120 INPUT "INCREMENT ";8
130Y=X+2
140 Z = PEEK(Y) : Z1 = PEEK(Y + 1)
150 W = Z1 * 256 + Z
160 C = C + 1 : D(C) = W: E(C) = A
170 POKE (Y + 1), INT (A/256): POKEY, A - INT (A/256) * 256
180 A= A+ B
190 Y = PEEK(Y -1) * 256 + PEEK(Y- 2)
200 IF Y = > T THEN 220
205 PRINT "#";
210 Y = Y + 2 : GOTO 140
220 FOR Y = X + 4 TO T
230 Z = PEEK(Y)
240 IF Z = 0 THEN X = Y + 1 : GOTO 220
250 IF Z <> 137 AND Z <> 141 AND Z <> 167 THEN 410
260 T$ = " " : FOR N = Y + 1 TO Y + 6
270 Y2 = PEEK(N)
280 IF Y2 < 48 OR Y2 > 57 THEN N = Y + 6 : GOTO 300
290 T$ = T$ + CHR$(Y2)
300 NEXT
310 P = VAL (T$) : IF P = 0 THEN 410
320 FOR N = 1 TO C
330 IF P = D(N) THEN M = N : N = C
340 NEXT
350 G$ = STR$(E(M)) : G$ = MID$(G$,2) 4- '2- o
360 IF LEN(T$) > LEN(G$) THEN G$ = G$ + "" : GOT0--369--
370 FOR N = 1 TO LEN(G$)
380 POKE Y + N, ASC (MID$ (G$,N,1))
390 NEXT
400Y=Y+N
410 NEXT
420 POKE 43, 1 : POKE 44, 16
430 T = T + 2 : W = INT (T/256)
440 PRINT " POKE 45," T - W * 256 "AND 46," W : END

Pack

The preceding utilities are nice to have around but their results
could be duplicated with some fudicious editing. The editing
work to compress or renumber is not too bad unless the program
is a long one. The Pack utility, however, is a different matter.

As has been pointed out, it is advisable to write programs in
short, single-statement lines. Long, multistatement lines are
hard to read and hard to debug. So, we want to write the former

[
194 • VIC 20 Programmer's Notebook

[

[

[

[

[

[

[

[

[

[

[_

[

Fig. 13-2. Flowchart of renumber.
[

[
L,

r
I
I
I
t
[

[

l
[

[

[

[

[

[

[

Program Statement Structure • 195

but run the latter in order to conserve memory and get the most
speedy execution. Manually changing from single to multistate­
ment lines in an existing program is a time-consuming process
even when that program is short. A great deal of retyping and
deleting is required. The Pack utility will "pack" your program
into multistatement lines and save you all that work.

Of course, a referenced line cannot be packed into the midst of
a multistatement line where it would lose its number and could
not be found by the program. For instance, line 130 cannot be
packed behind 120 if there is a GOTO 130 in your program. The
utility must not allow this to happen. Also, REMark and IF state­
ments must not be packed except at the end of a line. A line
packed in behind a REM will be ignored and behind an IF, it
would be executed sometimes and ignored at other times.

As shown in Listing 13-3 and Fig. 13-3, the first part of Pack
(lines 1 00-290) finds all referenced line numbers so that they will
not be "buried" in the middle of a line. In addition, it finds the
line numbers of lines following IF and REM statements to prevent
them from being buried and changing the program design.

The second section, lines 300-490, determines the number and
length of each line. If the total length of lines one and two is less
than 85, they are combined into one and that length plus line
three is checked. When a referenced line number is found, the
combining stops regardless of the lengths and the process is re­
started to see if anything can be added to the referenced line.

When Pack ends, each line that has been packed to another
contains four space characters- two in place of the original link
and two in place of the original line number. A colon has been
substituted for the original "end of statement" marker (0). The
packed program should be compressed and then renumbered for
both practical and aesthetic reasons.

UTILITY SUMMARY

It is obvious that a number of refinements could be added to
the three utilities presented previously. Some have been men­
tioned. Another that comes to mind is to combine the three into
one big menu-driven utility. Because these programs are written
in BASIC, refinements and modifications are easily accomplished.
Before fancying them up, however, consider the consequences
carefully.

f

196 • VIC 20 Programmer's Notebook

ADR = ADR + 11---M Z = VAL IN ADR j+---j;s:;ET~T~D~F~IR:S~T~O~F~LI~N:.E~2

YES

NO

Fig. 13-3. Flowchart

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r

I
I
[

I
I
I
[

[

[

r
r

r

Program Statement Structure • 197

The greatest potential disadvantage is the amount of memory
required by a long utility. The longer it is, the more space it re­
quires and that decreases the amount of memory available to
hold the program on which the utility is working. This could be a
serious problem on a 5K or 8K machine. The three short "parts"

POKE SPACES IN LINE 2 & LINE 2 #

of pack utility.

198 • VIC 20 Programmer's Notebook

Listing 13-3. Pack Utility Program

100 DIM A(SO) : X = 4097 : T = PEEK(44) * 256 + PEEK(43) - 2
110 FOR Y = X + 4 TOT: Z = PEEK(Y)
120 IF Z = 0 THEN X = Y + 1 : Q1 = 0: GOTO 110
130 IF Z = 139 THEN Q1 = 1 : GOTO 150
140 IF Z <> 143 THEN 180
150 U = PEEK(X + 1) * 256 + PEEK(X) : P = PEEK(U + 3) * 256 +

PEEK(U + 2)
160 N = N + 1 : A (N) = P .
170 IF Q1 = 0 THEN X = U : GOTO 110
180 IF Q THEN 280
190 IF Z = 34 THEN Q = 1 : GOT0290
200 IF Z <> 137 AND Z <> 141 AND Z <> 167 THEN 290
210 T$ = II II : FOR Y1 = y + 1 TO y + 6
220 Y2 = PEEK(Y1)
230 IF Y2 < 48 OR Y2 > 57 THEN Y1 = Y + 6 : GOTO 250
240 T$ = T$ + CHR$(Y2)
250 NEXT
260 P = VAL (T$): IF P = 0 THEN 280
270N=N+1:A(N)=P
280 IF Z = 34 THEN Q = 0
290 NEXT
299 REM - COMBINE LINES
300 X= 4097
310 W = PEEK(X) : W1 = PEEK(X + 1)
320 X1 = W1 * 256 + W
330 IF X1 = > T THEN 500
340 Z = X1 -X
350 X2 = PEEK(X1 + 2) : X3 = PEEK(X1 + 3)
360X4 = X3 * 256 + X2
370 FOR V = 1 TO N
380 IF AM = X4 THEN X = X1 : GOTO 310
390 NEXT
400 Y = PEEK(X1) : Y1 = PEEK(X1 + 1)
410 X2 = Y1 * 256 + Y
420 Z1 = X2 - X1
430 IF Z + Z1 > 85 THEN X = X1 : GOTO 310
440 POKE X, Y: POKE X + 1, Y1
450 POKE X1 - 1, 58
460 FOR V = 0 TO 3
470 POKE X1 + V, 32
480 NEXT
490 GOTO 310
500 POKE 43, 1 : POKE 44, 16
510 T = T + 2 : W = INT (T/256)
520 PRINT "POKE 45, II T - w * 256 II AND 46, II w
530 END

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

[

[

[

[

[

[

[

[

[

[

[

[

Program Statement Structure • 199

as given here are much less likely to cause a memory problem.
Whether or not you make changes in these utilities, don't

forget to accommodate any differences caused by added
memory. Address 4097 is not the beginning of BASIC program­
ming after you add memory and neither is POKE 43, 1 : POKE 44,
16.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
r
[

[

[

[

[

[

[

[

[

[

[

[

CHAPTER 14

Joystick, Paddles and Light
Pen

One of the great advantages of the VIC 20 is that it is so easy to
add external controls. The most common such controls are the
joystick, paddles, and light pen. Each one is simply plugged
directly into the game port on the right side of the machine. No
adapters or other connections are needed.

Of course, a bit of programming is needed in order to "read"
the values of the external control(s) and make them available for
your use. Because of the VIC 20's circuitry, the programming is
short and straightforward.

Each of these three external controls will be examined in this
chapter. There is a simple, illustrative program given for each de­
vice. The programs will show you how to incorporate the con­
trols into your programs and help you to understand how they
work.

Joysticks, paddles, and light pens are usually perceived as
adjuncts to game programs. In fact, you will find them as con­
trollers of action in games almost exclusively. As you study this
chapter and as you write your own programs, keep in mind that
they can be quite useful in other types of programs. For example,

201

202 • VIC 20 Programmer's Notebook

any one of them can be valuable to an operator who is unable to
use the keyboard effectively because of age or physical handi­
cap. Be on the lookout for such applications.

THE JOYSTICK

The joystick is the most common external controller for the VIC
20. The stick or handle is used to control the direction of action
on the screen. The "fire-button" or switch is used to control any
type of special action, usually the firing of a weapon.

There are four switches in the joystick exclusive of the fire-but­
ton. Using the four points of the compass for reference, there is a
switch at North, East, South, and West. When the stick is pushed
in one of these directions, the corresponding switch is closed.
Further, if the stick is pushed in a direction between these points,
the two adjacent switches are closed. For example, when the
stick is pushed Northeast, both the North and East switches are
closed.

By "reading" the joystick switches, the VIC 20 determines the
direction toward which you have pushed and can take action ac­
cordingly. There are, then, two major tasks for a program using
this controller. The first is to read the switches and the second is
to translate_ that reading into terms that can be acted upon.

Reading the switches is a matter of checking the ports con­
nected to the game control socket. This is done in the following
program in the subroutine in lines 900-940. The values found in
the ports are converted to X and Y coordinates.

Lines 200-220 convert these coordinates to compass points as
shown in Fig. 14-1. Thus, if the North switch is closed, the value
of Pin line 310 is 1. lfthe direction is Northeast, the value is 2 and
so on.

Joystick Art

[

[

[

[

[

[

[

[

[

[

[

[

This program enables the user to make graphic designs on the [
screen. Colors and graphic blocks are selected at the keyboard ·

and the joystick determines the direction of movement when the
fire-button is pressed. Note, especially, the manner in which the [
joystick input is handled.

[

r
r
r
r
[

[

[

r
[

[

[

[

[

[

[

Joystick, Paddles and Light Pen • 203

NORTH

NORTHWEST 1

I
NORTHEAST

8

WEST 7--9--3 EAST

6
SOUTHWEST I

5

SOUTH

SOUTHEAST

Fig. 14-1. The joystick "compass."

Listing

90 POKE 36879,10
100 DIM Q (2,2): R1 = 37139: R2 = 37154
110 PL = 3
120 POKE R1, 0
200 Q (0, 0) = 8 : Q (1 1 0) = 1 : Q (2, 0) = 2
210 Q (0, 1) = 7: Q (1, 1) = 9 : Q (2, 1) = 3
220 Q (0, 2) = 6: Q (1, 2) = 5 : Q (2, 2) = 4
290 PRINT II~ I:J ~ (9 times) Ill~ (11 times) . II;

300 GOSUB 900 : IF F = 0 THEN 300
310 P = Q (X, Y)
320 IF P = 9 THEN P = PL
330 PL = P
340 GET A$: IF A$ = II " THEN A$ = B$
350 IF A$ = 11 ~ liJ•11b1l•J" THEN POKE R1, 128: END
360 B$ =A$
370 ON D GOTO 400, 410, 430, 420, 440, 450, 460, 470, 480
400 PRINT II Emii-I!J ~ II; : GOTO 480
410 PRINT II Emii-I!J ~ "; : GOTO 430
420 PRINT II I:J t!limiJI II;

430 PRINT A$; : GOTO 300
440 PRINT II II;: GOTO 480
450 PRINT II •-=et=a:r:r:J=--;• "; : GOTO 480
460 PRINT II : GOT0480

47o PRINT II IIOft~r==r~~'fl,~~~~ 480 PRINT II r. r-n,Tn·:~nn

900 POKE R2, 127: R =
255

910 V = PEEK (37137) : D = - ((V AND 8) = 0)
920 L = (V AND 16) = 0: U = (V AND 4) = 0: F = - ((V AND 32) = 0)
930 X = L + R + 1 : Y = U + D + 1
940 RETURN

204 • VIC 20 Programmer's Notebook

Analysis

90 sets the color of the screen.
100 dimensions the Q variable and sets R1 and R2 equal to the ad-

dresses of the direction controls for the ports.
110 establishes the initial direction of movement (East).
120 sets port A for input.
200-220 set up the array to correspond with the "compass" in Fig.

14-1.
290 clears the screen and PRINTs a dot in the center.
300 calls the subroutine to read the joystick and, if the fire-button

was not pressed, repeats the call.
310 sets P equal to the compass direction as determined by the re-

turned values of X andY.
320 if P is 9 (stick centered) continues the previous direction.
330 updates the direction "holder."
340 checks the keyboard buffer and, if empty, continues the previous

input character or color.
350 if the character is an English pound, reverses the direction of port

A and ends the program.
360 updates the character holder.
370 transfers execution to the line containing action corresponding to

the compass direction of movement.
400-480 these lines move the cursor in various directions; PRINT the

proper character, graphic, color or space; and transfer back
to the call routine.

900 changes the direction of port B to input long enough to check the
No. 3 (East) switch.

910 reads the input at port A and checks the 5/South switch.
920 checks the 7/West and 1/North switches and the fire-button.
930 combines the switch readings to values for X andY.
940 transfers back to the main program.

Use

The statements and technique in this program can be trans­

ferred directly to any other. The program, itself, can be used to
create very intricate designs.

Variations

The possible variations on this program and the use of the joy­

stick are extremely wide. Use your imagination to apply the tech­
nique to all manner of programs.

You may wish to have the cursor (and design) move whenever

the stick is pushed away from the center position. Then the fire­

button could be used to randomly select a color or a graphic

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

[

[

[

[

[

[

[

[

[

[

[

[

Joystick, Paddles and Light Pen • 205

block. Don't overlook the possibility of using the joystick for
special actions within a keyboard-operated program. For
example, the stick could be used to select an answer from among
several presented.

PADDLES

In many respects, paddles are very much like joysticks. They
control the action on the display usually by moving the cursor or
a graphic design. They, too, have push switches that serve as fire­
buttons or initiators of other special actions. Of course, paddles
come in pairs and they are often used together.

There are two major differences between a paddle and a joy­
stick. The first·is that the paddle normally controls in only one
dimension. It causes the cursor or design to move horizontally or
vertically. Of course, you can use the paddle values to cause ac­
tion in two dimensions but that takes more than just a bit of pro­
gramming.

The second way in which a paddle differs from a joystick is that
it permits a finer degree of control. Instead of on/off switches,
the paddle contains a variable resistor that may have an effective
value from zero to 255 as read by the "VIC" chip. This means
that you can control something in 256 steps rather than in just
two (on/off). That degree of fineness of movement is seldom
used but it does give the potential of quite realistic action.

Music Master

This little program will demonstrate how the paddle values are
read. Here, they are used to control sound generators, so you
can create music - if you have the talent!

Listing

100 POKE 36879, 8 : POKE 646, 7
110 PRINT CHR$ (147);
120 POKE 37139, 0
130 DR = 37154
140 X = 200 : Y = 10
200 GOSUB 400
210 IF X2 <> X THEN POKE SG, X
220 IF Y2 <> v·THEN POKE 36878, Y
230 IF F1 THEN POKE SG, 0 : SG = 36876

206 • VIC 20 Programmer's Notebook

240 IF F2 THEN POKE SG, 0 : SG = 36874
260X2 = X:Y2 = Y
270 FOR Z = 1 TO 500 : NEXT
290 GOTO 200
400 X = 254 - INT (PEEK (36872) I 2) : Y = INT (PEEK (36873) I 17)
410 POKE DR, 127: F2 = - ((PEEK (37152) AND 128) = 0): POKE DR,

255
420 F1 = - ((PEEK (37137) AND 16) = 0)
430 RETURN

Analysis

100 sets the display and character colors.
110 clears the screen and homes the cursor.
120 changes the direction of port A in VIA No. 1.
130 sets DR equal to the address of port B in VIA No. 2.
140 sets the initial values for frequency and volume.
200 calls the subroutine to read the paddle values.
210 if the value of the frequency variable has changed, POKES the

new value into the sound generator.
220 if the value of the volume variable has changed, POKES the new

value into the volume control.
230 if fire-button No. 1 was pressed, turns off the sound generator

and changes the variable address to the other generator.
240 does the same as line 230 if fire-button No. 2 was pressed.
260 updates the values in X2 and Y2.
270 delays for a 500-count.
290 transfers back to repeat the process.
400 sets X to the value of paddle No. 1 after converting it to range

from 127 to 254 (as suitable for the sound generator) and sets y
to the value of paddle No. 2 after converting it to range from 0 to
15 (as suitable for the volume control).

410 changes the direction of port B long enough to set F1 to a value of
1 if the fire-button was pressed.

420 sets F2 to a value of 1 if the No. 1 fire-button was pressed.
430 transfers back to the main program.

Use

Aside from the fact that sound is generated as determined by
the positions of the paddles, this program shows how the paddle
values are read. The subroutine (lines 400-430) can be placed in
any program in which you wish to use paddle input. Two addi­
tional factors must be accommodated. First, the value of DR must
be set before the subroutine is called or 37154 can be put in line
410.

The second factor is the adjustment of line 400 to place the
values of X and Y in the proper ranges for the application. The

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

r

l
[

[

r
[

[

[

[

[

[

L

Joystick, Paddles and Light Pen • 207

"raw" readings will vary between 0 and 255, which may exceed
the values permissible in your program. The raw readings can be
made with these statements:

X = PEEK (36872)
Y = PEEK (36873)

Another example of adjusting the raw readings will be found in
the following program.

Variations

The number of possible variations on this program is all but
limitless. For a beginning, you could use other sound/noise
generator combinations; leave the current generator on when
changing from one to another (delete POKE SG, 0 from lines 230
and 240); chan9e the speed with which tones can be changed
(line 270); set the volume to a constant value and let each paddle
control an individual sound generator; and add some visual ef­
fect, such as

105 SC = 256 * PEEK (648)
250 POKE SC + INT (RND (O) * 500), 42
280 IF RND (0) < .05 THEN PRINT CHR$ (147);

Capture Game

This small game allows two players to compete by capturing
(erasing) the graphics scattered about the screen by the op­
ponent while protecting his own. Its main purpose, however, is
to provide another illustration of limiting the range(s) of the
paddle values to those suitable for the application.

Listing

200 : IF X2 = X AND Y2 = Y THEN 200
210 PRINT CHR$ (19);
220 IF X> 0. THEN FOR Z = 0 TO X : PRINT " I!J t!liEiJ "; : NEXT
230 IF Y < 0 THEN FOR Z = 0 TOY : PRINT" llil t!liEiJ "; : NEXT
240 IF RND (0) < .5 THEN IF F2 THEN POKE 646, 3 : GOTO 260

208 • VIC 20 Programmer's Notebook

250 IF F1 THEN POKE 646, 7
260 PRINT B$;
270 X2 = X : Y2 = Y
280 GOTO 200
400 X = 21 - INT (PEEK (36872) I 12) : Y = 20 - INT (PEEK (36873)

/13)
lines 410-430 from music program, above

Analysis

140 sets variables to place ball in middle of screen.
150 sets B$ to a ball design surrounded by spaces.
200 calls the subroutine and repeats if X and Y values are unchanged.
210 homes the cursor.
220 counts the lines for design placement.
230 counts the columns for design placement.
240 half the time changes the design color if fire-button No. 2 was

pressed.
250 half the time changes the design color if fire-button No. 1 was

pressed.
260 PRINTs the design at the location determined by the paddles.
270 updates the values of X2 and Y2.
280 transfers back to repeat the procedure.
400 sets the values of X and Y as determined by the paddles after con­

version of the raw readings to line and column ranges.

Use
Note how the X andY readings are made appropriate for the

specification of screen line and column.
This little game, though rather crude, can get fairly interest­

ing. Each player controls one direction of movement (and speed)
as well as one color of the design. In play, there is neat combina­
tion of aggression, defense, and sabotage. The winner, of
course, is the player with the greatest number of dots of his color
on the screen.

Variations

As in the previous example, only your imagination limits the
variations on this basic game.

THE LIGHT PEN

The light pen, like the joystick and paddles, is easy to attach to
your VIC 20. Just plug it into the game port- no other hardware
is needed. Programming, on the other hand, is a bit more com-

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r

r
L
[

[

[

[

[

[

[,

[

[

[

Joystick, Paddles and Light Pen • 209

plex. The reason for this is that all light pens are not made alike
and you have to calibrate your pen, VIC 20 and tv/monitor.

The first thing you must do is connect the pen and find out
what range of vertical and horizontal numbers it returns. These
statements PRINT two columns of numbers on the screen. The
first column is row (vertical) numbers and the second is column
(horizontal). By moving your pen from top to bottom of the dis­
play and from side to side, you can determine the row and
column ranges.

10 POKE 36879, 25 : POKE 646, 6
20 PRINT CHR$ (147);
30 R = PEEK (36871)
40 C = PEEK (36870)
50 PRINT R, C
60 GOTO 30

Let's use an actual example to illustrate how the calibration is
done. In running the program, the "row" numbers ranged from
18 to 120. Of course, there are only 23 lines on the display, so we
must change this range to run from 0 to 22. Inserting this state­
ment will do just that:

45 R = INT ((R -17) I 4.7)

Now, R varies neatly between 0 and 22 and can be used to
determine the line at which the pen is pointed. In calibrating
your setup you may have to juggle the figures a bit to make them
come out just right. The column range is handled in the same
way.

To keep things simple and clear, we will use only the line
(row/vertical) readings in a practical application. Study the fol­
lowing program which uses this calibration.

Listing

10 SC = 256 * PEEK (648) : CO = 38400 : IF SC < 5000 THEN CO =
37888

20 POKE 36879, 29 : POKE 646, 6
90 PRINT CHR$ (147);
100 FOR X = 1 TO 20 : PRINT : NEXT
110 PRINT "TOUCH HERE TO CONTINUE"
120 SK = 1 : GOSUB 800: SK = 0
130 IF A< 17 THEN 120
190 PRINT CHR$ (147);
200 PRINT "THE CAPITAL OF VA IS" : PRINT

210 • VIC 20 Programmer's Notebook

210 PRINT SPC (5} ''WASHINGTON" SPC (34} "RICHMOND" SPC (36}

"NORFOLK"
220 GOSUB 800
230 PRINT: IF A = 4 THEN PRINT "VERY GOOD!": GOTO 250
240 PRINT "THAT'S NOT RIGHT"
250 FOR X = 1 TO 5000 : NEXT
260 GOTO 90
800 R = PEEK (36871} - 20
810 A = INT (R I 4.8}
820 C = B: B = A: IF A<> C THEN 800
830 IF SK THEN 860
840 POKE SC + A * 22 + 3, 81
850 POKE CO + A * 22 + 3, 5
860B=O:C=0
870 RETURN

Analysis

10 sets Screen RAM and Color RAM addresses regardless of memory
size.

20 sets display and PRINT colors.
90 clears screen and homes cursor.
100 places cursor on line 21.
110 PRINTs message.
120 sets SK flag (to prevent PRINTing of indicator}; calls pen sub-

routine; and resets flag.
130 checks to see if a line below 17 was touched.
190 clears screen and homes cursor.
200 PRINTs a question.
210 PRINTs three answers.
220 calls the pen subroutine.
230 PRINTs "GOOD" message if line 4 was touched.
240 PRINTs "WRONG" message if another line was touched.
250 delays for a 5000-count.
260 repeats the example.
800-810 read the row number and convert it to a line number (note

that the conversion needed some fine tuning to function in
the program}.

820 transfers back to read again unless three consecutive readings
are the same.

830 if the SK flag was set, skips the PRINTing of the indicator.
840 POKEs a graphic (ball} at the chosen line.
850 POKEs a color for the graphic.
860 resets variables B and C to zero.
870 transfers back to the main program.

Uses

This program illustrates the use of a light pen in selecting

responses. This technique can be copied directly into your pro-

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[:

r
[.

['

[

[.

[:

Joystick, Paddles and Light Pen • 211

grams Qut you may have to recalibrate the pen so that the line
numbers come out right.

Note that the light pen can be especially useful to users who
are physically handicapped and find it difficult to operate the
keyboard. It is equally valuable when working with children too
young to read and/or type (their task might be to match colors,
shapes, and so on).

External controllers can add a great deal to many types of pro­
grams - not just games. Don't provide for their use simply be­
cause they exist. Keep them in mind as you write your programs
and add them when they can make a real contribution to its ef­
fective operation.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[,

[

['

[

[

['

[

[

CHAPTER 15

Privacy and Program
Protection

From the time of the earliest computers, programmers have
been concerned with controlling who had access to the fruits of
their labors. From the same time, users of programs and other
programmers have been trying to gain access to programs the
writers attempted to protect. It is a game that many com­
puterists play- "if you hide it, I will find it." The levels on which
the game is played vary from friendly neighbors to antagonistic
nations. The methods used vary from appeals for fair play to
elaborate encryption.

As a programmer, there will be times when you want to pro­
tect your programs from others. Such occasions will fall into one
or both of two general categories. You may wish to prevent a
user from easily looking into the program to find the answers to
(test) questions or to discover the winning strategy for your
newest game. On the other hand, you may want to keep others
from discovering how to use a technique you have developed or,
even, from making a copy of your program. We will look at both
types of protection.

Often, the protection of a program is a legitimate and real
need. Be advised, however, that there are no known methods

213

214 • VIC 20 Programmer's Notebook

that will guarantee secrecy. That which one can hide, another

can find sooner or later.
We cannot get into elaborate protection methods but we will

discuss a few simple techniques that will keep out unsophisti­
cated users. Varying degrees of effort and expertise will be re­
quired to get around them. They will be sufficient to put up a
smoke screen or a barrier of sorts around the things you wish to
hide. You will have to take it from there if you wish to go
further.

DELETE REMARKS

One of the first rules of programming is to make liberal use of
REMark statements to help you remember a few months later
how your own program works. The first rule of hiding anything
about a program is to take out all REMarks (keeping a copy for
yourself, however}. Then, anyone unfamiliar with the program
will have to spend more time working out the techniques and
algorithms.

PACK YOUR PROGRAM

A program in which every statement is on a separate line is
one that is easier to figure out. Multistatement lines are harder
to follow. Use a "pack" program such as the one in Chapter 13,
to condense your program as much as possible.

INVISIBLE LINES

When someone examines your program listing, you can throw
him or her a few curves by making some of the more important
lines invisible. If you change the link in line No. X to refer to line
No. X+ 2 instead of line No. X+ 1, then X+ 1 will not list. The pro­
gram will RUN quite normally as long as that line is not ref­
erenced by a GOTO, GOSUB, or THEN.

DISABLE CERTAIN FUNCTIONS

If you disable one or more normal VIC 20 functions, it will
cause the curious some trouble. If they can't use the keyboard or
STOP the program, for example, they can't get at the program

[

[

[

[

[

[

L
[

[

[

[

[

[

[_

r
l
[

J

l'
[

f
l

[

[

[

(

[

Privacy and Program Protection • 215

once it starts RUNning. Of course, they may have read these
Notes and know exactly what to do. Even so, it will· slow them
down, at least.

Here are some memory locations with which you can begin.
Undoubtedly, you will discover others.

Location 649 holds the size of the keyboard buffer. The value is
10 normally. If your program POKEs 0 here, the keyboard is non­
existent to the VIC 20 except for the la1Nfk1l•1=1 key.

Location 775 is a part of the tokens link. The normal value is
199. POKE in 200 to disable the LIST command but allow the pro­
gram to be re-RUN. If you POKE 198, the LIST command will
cause the VIC 20 to lock up tightly. A value of 175 will cause LIST
to clear the screen and disable both the RUN and the
1;11Nr.f.jl•1=1 I;J=f•il•W:W functions.

Location 808 is a part of the STOP vector and normally holds a
value of 112. A value of 114 disables and 100 dis-
ables lallllfkjOlil liJ:f·1"l;JI.

Location 818 is a part of the SAVE link. If the normal value of
133 is replaced with 134, the SAVE command is disabled.

CONCEALED IDENTIFICATION

Writers often begin their programs with several REM state­
ments that contain an identifying name, organization, and ad­
dress. Certainly, these lines are easy to delete if one wishes to
make an unauthorized copy of the program. You may wish to
conceal identifying data as well. Such data might be name,
initials, and/or serial number.

Data can be concealed within a program if you are willing to
do some manipulation in memory. The method depends heavily
upon information given in Chapter 13. You will have to refer to
that chapter in order to use this technique. We can give only an
outline of the steps to take because the details will differ from
program to program - you will have to fill in the numbers.

The example we will use is a program containing lines num­
bered 210, 230, and 240. Assume that there are five characters
you wish to hide, though you may use any number.

1. Insert the following lines in the program:

220 REMXXXX,XXX
235 REM 12345 < = = =the characters to be hidden

216 • VIC 20 Programmer's Notebook

2. Look into memory (Chapter 13) to find the link given in line

235 and find the address of the link in line 230.
3. If the high-order bytes in line 230 and 235 are different, go

back to step 1 using this line in place of the one given for

220:

220 REMXXXX,XX:HXXXX,XXX

4. Return to the LISTing and replace line 220 with:

220 POKEnnnn,mmm

(Note that nnnn is the 4-digit address of the low-order link

in line 230 and mmm is the 3-digit low-order link found in

235 which is padded with an initial zero if necessary to give

3 digits.)
5. If both link bytes were to be changed (step 3), repeat the

substitution in the second-half POKE statement using the

high-order byte and its address.

What you are doing here, of course, is to put the line 235 link

into line 230 also. The business of line 220 is necessary because

SAVing and LOADing the program will undo the hiding if you

POKE the numbers from the keyboard. When all is done, line 235

will no longer exist as far as the program and its LISTing are con­

cerned. You will have to PEEK in there to get the hidden infor­

mation.
Be aware of the fact that you do not have to have line 220 so

close to line 235- it just has to execute before line 235. Further,

you do not have to have all those POKE numbers hanging there

for everyone to see. You can use variables that have gone

through several modifications before they are used, all of which

will discourage the decoders.

HIDING WORDS

There are many ways to hide answers or other words in a pro­

gram. Here are several techniques that will get your thought

processes started. In each case the word to be hidden is

"AFRICA" and it ends up in the variable B$. Note that in a real

program, the statements would not be grouped together and,

thus, would be less obvious.

[

[

[

[

[

[

[

[

[

[

L
[

[

[

r
[

r
r
[:

[

[,

[

[.

[

[

[

L
r
[

Privacy and Program Protection • 217

Method 1 - Using ASCII Values for the Letters

10 B$ = CHR$(6S) + CHR$(70) + CHR$(82) + CHR$(73) + CHR$(67)
+ CHR$(6S)

20 PRINT B$

Method 2 .,._ Using Data Statements With ASCII
50 Values

10 B$ = " " : FOR N = 1 TO 6 : READ A
20 B$ = B$ + CHR$ (SO + A)
30 NEXT : PRINT B$
40 DATA 1S, 20, 32, 23, 17, 15

Method 3 - Using Concatenation of Every Second
Letter From a Disguised Word

10 A$ = "RATFIRMIOCRA"
20 B$ = " " : FOR N = 2 TO LEN (A$) STEP 2
30 B$ = B$ + MID$ (A$, N, 1)
40 NEXT : PRINT B$

Method 4 - as Method 3 Except Concatenation in
Reverse

10 A$ = "RATCLIPRAFTAM"
20 B$ = " " : FOR N = 2 TO LEN (A$) STEP 2
30 B$ = MID$ (A$, N, 1) + B$
40 NEXT: PRINT B$

Method 5 - as Method 4 Except A$ Is
Concatenated From Quite Normal Appearing Words
in a DATA Line

10 A$ = " " : FOR N = 1 TO 4 : READ T$
20 A$ = A$ + T$: NEXT
30 B$ = " " : FOR N = 2 TO LEN (A$) STEP 2
40 B$ = MID$ (A$, N, 1) + B$
SO NEXT : PRINT B$
60 DATA RAT, CLIP, RAFT, AM

ENCODING

The subject of coding or cryptography is well beyond the scope
of this book. There is a whole body of literature on the subject.
We will give you a brief sample, however, in case you have an .

218 • VIC 20 Programmer's Notebook

urgent need to protect something to a greater degree right now
before you have time to do research in that field.

This technique makes use of the Dual Programs Note explained
in Chapter 8. Here are the steps that result in an encoded pro­
gram:

1. LOAD the plain-text program to be encoded. DO NOT RUN
IT!

2. Execute the following line from the keyboard, making a
note of the resulting numbers and labeling them W, X, Y,
and Z, respectively:

FOR N = 43 TO 46 : PRINT PEEK (N) : NEXT

3. Determine the values of B and E with these formulas using
the values for W, X, Y, and Z from step 2:

B = W + 256 *X
E = Y + 256 * Z - 4

4. Clear the VIC 20 (NEW), type in and SAVE the following pro-
gram using the previously determined values for B and E:

10 FOR N = B TO E
20 A = PEEK (N)
30 IF A> 127 THEN 70
40 IF A > 63 THEN A = A - 64 : GOTO 60
50 IF A < 64 THEN A = A + 64
60 POKE N, A
70 NEXT

5. Clear the VIC 20 and LOAD (do not RUN) the program to be
encoded. Using the appropriate values, execute this line
from the keyboard:

POKE 43, Y : POKE 44, Z

6. LOAD and RUN the coding program (from step 4).
7. Execute this line:

POKE 43, W : POKE 44, X : POKE 45, Y : POKE 46, Z

8. Your program is now ready to be SAVEd in its encoded form
in the normal manner.

The same coding program (step 4) is used to decode the pro­
gram. Follow the same steps, though it is not necessary to make
another copy of the coding program. On occasion when the en­
coded program is LOADed, the machine appears to lock up. If

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

['

r

[

[

[

[

[

L
[

[

Privacy and Program Protection • 219

this happens to you, just press lalb1fk1«•HI-I;J41«•ml and
proceed.

You should be aware of several points regarding this coding
process. First, complete access is denied anyone who does not
have (or figure out) the decoding program. Thus, for anyone to
use your work, you must decode it for them or furnish the decod­
ing program. For many uses, this defeats the purpose.

The second point is that you don't have to encode an entire
program. Sometimes only a small coded portion will be suffi­
cient. Then, the decoding may be done with a "key" that is
hidden away in the main program.

Finally, this coding program is a very simple one. You can
change it in many ways to keep out "snoopers."

SUMMARY

We have made only a bare-bones beginning on security of pro­
grams and contents. Even so, these approaches will function like
locks~ they will keep out the honest people. Don't overlook the
possibilities in combining some of these methods.

The subject of privacy and program protection is an extensive
one. Governments and businesses, large and small, devote a
great deal of time and effort to attempts to find unbreakable
techniques. At the same time, each one is hard at work trying to
break the systems in use by the others. In a way, it is amusing in
spite of its seriousness.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r~

L
L
('

[

['

[

[

[

r
L
['

CHAPTER 16

Miscellaneous Notes
In assembling Notes for the preceding chapters, there were

those that did not fit into the various topics under discussion.
They were put aside thinking they would be suitable elsewhere
and many were used subsequently. Now, however, we reach the
final chapter and still have a number of Notes "left over." Be­
cause they will be useful to you, some of them are given here
under the heading of miscellaneous- which is no heading at all!
So, here they are: a potpourri of Notes.

NONREPEATING SELECTION

Many types of programs include the random selection of an
item from a limited list. Perhaps the selection is from a group of
questions or of numbers. Usually, you will not want the same
item presented in two consecutive passes - or three or four.
There are occasions when you will want no item chosen more
than once.

Listing

221

222 • VIC 20 Programmer's Notebook

30 DATA ALABAMA, ALASKA, ARIZONA, ARKANSAS, etc.

210 FOR X = 1 TO 50
220 Z = INT (RND (0) * 50) + 1
230 IF Z = R THEN 220
240R=Z
250 FOR Y = 1 TO Z : READ A$: NEXT
260 PRINT "WHAT IS THE CAPITAL OF" A$;
270 INPUT B$

. (scoring routine here)

310 NEXT

Fig. 16-1 shows a flowchart for nonrepeating selection.

Analysis

210 sets up a 50-count loop.
220 sets variable Z equal to a random number from 1 to 50.
230 if the value of Z equals the value of R, transfers back to reset Z to

another random number.
240 sets R equal to the current value of Z.
250 READS to the Zth item of DATA.
260 PRINTs the question about the chosen item.
270 allows the user to input an answer.
310 continues the loop until conditions are satisfied.

Use

Often you will need to present a series of items in games,
tutorials, tests, and many other types of programs. At times, you
will want the items used in a fixed order. At others, your purpose
would be defeated if they appeared in a fixed order. In the latter
cases, this routine will give a varying order and, as a bonus, pre­
vent the duplication of items.

As shown, the routine avoids the presentation of an item that
has just been presented. In this example, we are using the names
of the states. The "items" can be of any nature, even randomly
generated numbers for math problems or letter groups for
memory testing.

In this routine, if any selected random value of Z is equal to the
preceding value, it is rejected and another random value is

[

[

[

[

[

[

L
[

[

[

[

[

[

[

[

r
r;
[

r:

r
[,

[:

[

L
[,

L

.
:

. • •

Fig. 16-1. Flowchart for nonrepeating selection.

Miscellaneous Notes • 223

generated. This will ensure that no two consecutively chosen
values are equal. Because the successive values of Z are used to
select states from the list, no state will be repeated right after it
has been presented.

Variations

1. If you wish to prevent the use of an item that was presented
within the last two, make these changes:

230 IF Z = R OR Z = S THEN 220
240R=Z:S=R

2. Of course, you could expand the number of items that
would not be repeated by expanding on the previous variation.
Just add T, U, V, and as many as you like. Very quickly, however,
the programming becomes long and tedious and slow-RUNning.

224 • VIC 20 Programmer's Notebook

3. You have noticed that the previous routines can prevent the
repetition of recent and not-so-recent selections. Unless you go
to extreme lengths, there will be repetitions in the selections and
some of the items in the list (states) will not be used at all. The
following is a good way to disallow all repetitions and, within
the 50-count loop, select every state. To do so, make these
changes:

200 DIM B(SO)
230 IF B(Z) THEN 120
240 B(Z) = 1

Now, when an item is selected, a corresponding "flag" is set in
the B(n) array; e.g., if 10 is selected, the value of B(1 0) is changed
to 1. Of course, all the B(n) values start out as 0 from program
initialization. In line 230, B(Z) is tested to see if the value is not
zero (that statement is a shorthand way of saying IF B(Z) <> 0
THEN 120). Thus, if 10 ever comes up again in line 220, as you can
bet it will, it is rejected because B(1 0) is not equal to 0.

Each state is selected once and only once. Nothing is free, how­
ever. As you noticed when you ran the new routine, the last
states were slow to appear. That is because dozens of selections
may have been made before an unused one came up. Still, it's
better than having the states (or other items) presented in the
same order each time the program is RUN.

4. Though shown in DATA statements, the items to be chosen
can be in other forms. An array is used frequently: A(1) =
"ALABAMA": A(2) = "ALASKA": ... To save program space, a
long item list may be read into an array before the selection
process begins: FOR X = 1 TO 50 : READ A(X) : NEXT.

THE FUNCTION KEYS

The function keys can be a great asset to you because they can
cause virtually any type of action. They can be most helpful in
program writing itself in addition to executing complex state­
ments for the program operator. You saw an example of the
former in the Build utility program in the section entitled "How
To Use This Book."

Listing

2000 GET U$: IF U$ = II II THEN 2000
2010 U = ASC (U$)

[

[

[

[

L
[

[

[

[

[

[

[

[

[

[

L
L

[

[

L
[

L

2020 IF U = 133 THEN •..
2030 IF U = 134 THEN ...

2090 IF U = 140 THEN ...
2100 RETURN

Analysis

2000 waits until a key has been pressed.

Miscellaneous Notes • 225

2010 sets U equal to the ASCII value of the key that was pressed.
2020 if the key was W, takes the specified action.
2030 if the key was liJ, takes the specified action.
2090 if the key was W, takes the specified action.
2100 transfers back to the main program if the key pressed was not a

function key.

Use

As you have learned, a function key must be "programmed"
or it will have no effect. The ASCII value returned by each key is

ID
m
w
w

133
137
134
138

135
139
136
140

Note that the even-numbered functions are realized by pressing
the f'J:IIjl key with the function key.

There is no practical limit to the actions that may be taken
when a function key is pressed. Even the types of actions are
limited only to those of which the VIC 20 is capable. You can
PRINT (the program variables for debugging), SAVE (a program
or data), change a program component (variable, data), NEW
(erase the entire program), permit special user INPUT, GOTO a
special routine, RUN, LIST, RETURN, END and so on. Use your
imagination to get the most from the function keys.

Variations

The possible variations are so numerous that we will discuss
only a slightly different application for the function keys. You re­
call that memory location 197 holds a particular value for any key
that is pressed. The following lines will cause program execution
to pause until the specified function key is pressed:

226 • VIC 20 Programmer's Notebook

200 PRINT "PRESS F1 TO CONTINUE"
210 IF PEEK (197) <> 39 THEN 210

Note that 39 is the "current key" value for W· The others are:

47 =W 55 =W 63 = W
As with the other keys, the current key values for SHIFTed func­
tion keys are the same as the un-SHIFTed values.

SETTING THE ODDS

In some programs, one of two or more possible operations
must be performed on the basis of probability or odds. In a
game, you may wish to set the odds just like they do on the one­
arm bandits (slot machines), so that a player will lose more often
than he will win. (Now, would you like to gamble against my
program?) In many types of programs, possible courses of action
can be chosen by chance (using your odds) to prevent repetition
of a fixed sequence that can become predictable or boring or
both.

Listing

100 FOR Z = 1 TO 100
110 X = RND (O)
120 IF X< .5 THEN 150
130 PRINT "H" ;
140 N = N + 1
150 NEXT
160 PRINT "N = " N

Analysis

100 sets up a 100-count loop.
110 sets X equal to a random number between 0 and 1.
120 if the number is less than 0.5, loops to get another number.
130 PRINTs an H (for heads).
140 increments the counter N.
150 continues the loop until the conditions are satisfied.
160 PRINTs the number of "heads."

Use

One of the most frequently encountered demonstrations of
probability is a heads/tails coin toss, which is a 50-50 proposition.
The odds in dice and cards are almost as well known. With this

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

[

r
[

[

[

r
r
[

[

[

[

[

L

Miscellaneous Notes • 227

little programming technique, you can change the probability or
odds to make all players equal, to favor the "house" or to suit
any particular purpose.

A fixed sequence of reinforcement or admonition graphic dis­
plays in an instructional or game program can become tiring.
Now you can mix them up as you wish. You will find many appli­
cations for this odds-maker, which can be placed in the main pro­
gram or in a subroutine if it is to be used several times.

The statements actually creating the odds are in lines 110 and
120. The routine shown is suitable for studying how the odds fall
(in this case, 50-50) with any given number in line 120.

Variations

1. The LISTing sets the odds at 1 to 1. The number 0.5 in line 120
can be changed to produce other probabilities. For example, use
0.66 for 1 out of 3; 0.33 for 2 out of 3; 0.1 for 9 out of 10 and so
on.

2. If a variable is used in place of the number in line 120, you can
change the odds at any time during the program RUN by chang­
ing the value of the variable. These statements illustrate how to
do this and place the odds-maker in a subroutine:

110 V = .4: GOSUB 700

190 V = .7: GOSUB 700

700 IF RND (0} < V THEN •..
710 RETURN

3. In variation No. 2, the odds can be both variable and unpre­
dictable at the same time. Even you won't be able to predict the
odds with this statement:

220 V = RND (0} : GOSUB 700

INDEFINITE DELAYS

It is a rare program, indeed, that does not use any delay state­
ments. One type of delay takes some given action at the end of a

228 • VIC 20 Programmer's Notebook

specified length of time. That type was discussed in the Timers
and Delays Note in Chapter 8.

Another type of delay is of indefinite length. You want the
program to stop executing until the operator takes some action.
Such delays are used to allow time for the operator to read in­
structions, for example. When he is ready to go on, he presses a
key and the program continues. Indefinite delays are used to
allow time for studying a chart, making a decision, and similar
user actions.

We will show you several ways to create an indefinite delay.
When you are familiar with them, you can choose the one that
best meets the needs of the various programming situations you
will encounter.

nnn INPUT W$

This statement is used often. It halts program execution until
I;J:UII;h11 is pressed. In this use of INPUT, you are not seeking
user input beyond that signal that he is ready to proceed. The
variable (W$) is ignored in the following program lines.

nnn GET W$: IF W$ = II II THEN nnn

This indefinite delay is commonly seen in programs. The ad­
vantage over using INPUT is that the program proceeds when
any key is pressed. The disadvantage is that it requires a separate
program line, while INPUT can be placed in the middle of a multi­
statement line. Both of these methods, however, have a com­
mon disadvantage that may or may not be important in a given
program - they do use string space.

nnn GET W$: IF W$ <> 11K11 THEN nnn

You will find this GET statement useful when the operator is to
press a specific key. In this example, the program will proceed
only when the K-key is pressed.

nnn WAIT 197, 64, 64

It has been said that the use of the WAIT statement is archaic,
yet it is often useful. As shown, the statement halts program
execution until any key is pressed. It can be placed in the midst of
a multistatement line (as well as on a separate line) and it uses no
string space. In addition, it is shorter than the GET delay and, so,
saves memory. Altogether, this is a very useful indefinite delay
statement for most purposes. WAIT can be made to respond to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

r
r
[

[

[

[

[

[

[

[

[

[

[

Miscellaneous Notes • 229

only one key but the statement does become rather cumbersome
in this use except for one key.

nnn WAIT 653, 1

This short WAIT statement halts program execution until a
SHIFT key is pressed. Its uses and advantages are the same as
those of the previous WAIT statement. Use this one when it is im­
portant not to respond to just any key.

FLASHING SCREEN

On many occasions you will want to attract the attention of
the user. It may be when he or she must watch something closely
or when he or she has made an error. This subroutine will alter­
nately flash the screen colors to let the user know that something
special is happening. We consider the flashing screen superior to
the alternative of beeping or screeching with sound because the
tv/monitor volume may be off but the screen is always on.

Listing

20 cz = 36879

130 GOSUB 800

800 ZY = PEEK (CZ)
810 FOR XX = 2 TO 21
820 ZZ = ZY
830 IF XX I 2 = INT (XX I 2) THEN ZZ =· 25
840 POKE CZ, ZZ
850 FOR XV = 1 TO 300: NEXT
860 NEXT XX
870 RETURN

Analysis

20 sets the variable CZ to the screen color address.
130 calls the subroutine.
800 sets the variable ZY to the current value of the screen colors.
810 sets up a 20-count loop.
820 makes ZZ equal to the (color) value of ZY.
830 on even-numbered counts, changes the value of ZZ to 25 (white).

230 • VIC 20 Programmer's Notebook

840 POKEs the specified screen colors.
850 delays for a count of 300.
860 continues until the loop specifications are complete.
870 transfers back to the main program.

Use

This subroutine alternately changes the screen colors between
white and the original colors. At the end of the sequence, the
colors are as they were before the subroutine was called.

In addition to the previously stated use for attracting atten­
tion, you can use this technique effectively to heighten the sense
of excitement in a game or other type of program.

Variations

1. By changing the constants in lines 810 and 850, you can
change the number of flashes and/or the delay between flashes.

2. As written, the alternate flashing color is white. If you prefer
another color or, especially if your screen is normally white, you
will wish to change the alternate color. This is done by replacing
the 25 in line 830 with a number of your choice.

3. You can add sound to this "attention-getter." A short beep
routine can be inserted anywhere between lines 810 and 860 to
sound each time the screen flashes.

4. Flashing the entire screen is rather drastic. You can flash only
the border color by changing these lines:

800 ZY = PEEK (CZ) AND 7
830 IF XX I 2 = INT (XX I 2) THEN ZZ = 1
840 POKE CZ, PEEK (CZ) AND 248 OR ZZ

Note that the border flashes between white (the 1 in line 830)
and the original color.

STANDARD SUBROUTINE PACKAGE

If you do much programming at all, you will find that there are
certain subroutines that you use with most of your programs.
You can save a great deal of time and effort if you prepare them
into a standard subroutine package, SAVE it, and then append it
to the ends of programs as they are written. (See the Append
Note in Chapter 8.) This Note suggests a package that includes
several useful subroutines ..

[

[

[

[

[

[

r
[

[

[

[

[

[

[

[

r
r
r

[

[

[

[

[

[

[

[

[

[

[

Miscellaneous Notes • 231

Listing

20 52 = 36875 : v = 52 + 3 : cz = 52 + 4

900 FOR XX = 1 TO 100 * T : NEXT : RETURN
910 ZY = PEEK (CZ}: FOR XV = 2 TO 11 : ZZ = ZY: IF XV I 2 = INT

(XV I 2} THEN ZZ = 25
920 POKE CZ, ZZ: T = 2: GOSUB 910: NEXT: GOTO 950
930 POKE V, 15: T = 1 : FOR XV = 1 TO 10: POKE 52, 240: GOSUB

900 : POKE 52, 0 : GOSUB 900 : NEXT : POKE V, 0 : RETURN
940 PRINT" 1;(•1\'JIJ" : FOR XX = 1 TO 21 : PRINT : NEXT : PRINT

"fi:twJI!!J ->PRESS ANY KEY<= = "; : WAIT 197, 64, 64
950 PRINT" Emil-e!iJ"; : RETURN

Analysis

20 sets the sound, volume, and color variables.
900 delays for a count determined by variable T.
910-920 flash the color of the screen and transfer to 950.
930 sounds a series of beeps.
940 PRINTs a message at the bottom of the screen and WAITs for a

key to be pressed.
950 clears the screen, homes the cursor, and transfers back to the

main program.

Use

This standard subroutine package is composed of several
"stand alone" and integrated subroutines. Any line except 920
can be called independently. Of course, they can be called
sequentially.

When, modified to suit your particular needs and SAVEd, it is
available to be appended to any program you are writing. If you
do not need all the subroutines in a package for a given pro­
gram, append it anyway because it is easier to delete a few lines
than to type in all the rest. The saving in time will be significant
to you.

Variations

The beauty of a standard subroutine package is that the varia­
tions are limitless. You can include just those subroutines that
are most useful to you. They may be independent or interlocked
(as when one subroutine calls another). Through the use of flags,
you can have a great deal of versatility in your package.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

[

[
APPENDIX A

[

[Useful Memory Locations
[

[

[

[

[

[

[

[

Decimal Address

43/44
45/46
47/48
49/50
51/52

55/56

57/58
59/60
152
160
161
162
197
198

199
201/202
203

Description

Pointer to start of BASIC program area
Pointer to start of variable storage
Pointer to start of array storage
Pointer to end of arrays
Pointer to end of string storage

(moves down from top)
Pointer to top of free RAM

(program area)
Line number being executed
Previous line number executed
Number of files open
Mini-clock (18.2 minute increment)
Mini-clock (4.2 second increment)
Mini-clock (1 /60 second increment)
Number of the depr;,essed key
Number of characters in keyboard

buffer (0 clears buffer)
Screen reverse flag
Input cursor (ro.w, column)
Number of the depressed key

233

[
234 • VIC 20 Programmer's Notebook

[
205 Cursor timing
206 Character at the cursor

[209/210 Pointer to screen line
211 Position of cursor on line
214 Cursor row
243/244 Screen color pointer

[631-640 Keyboard buffer
646 Color code for printing characters
647 Color at the cursor
648 Screen memory page

[649 Size of keyboard buffer (maximum
= 10) (set to 0 to disable keyboard)

650 Repeat key action (0 = normal; 100
= disable repeat; 128 = all repeat)

[651 Repeat key speed
653 SHIFT control
657 Shift mode switch

(0 = enabled; 128 = locked)

[774n75 Print tokens link
808/809 STOP vector
818/819 SAVE link
828-1019 Cassette buffer
1024 Begin BASIC area (VIC + 3K) [4096 Begin BASIC area (VIC)
4096 Begin Screen RAM (VIC + 8K and up)
4608 Begin BASIC area (VIC + 8K and up)
7680 Begin Screen RAM (VIC and VIC + 3K) [36872 Location for reading No. 1 paddle
36873 Location for reading No. 2 paddle
37137 Port B
37139 Dire.ction (in/out) of port A [37152 Port A
37154 Direction (in/out) of port B
36864 Horizontal position of display

(5 = normal) [36870 Horizontal position of light pen
36871 Vertical position of light pen
36874 Sound generator (low)
36875 Sound generator (mid) [36876 Sound generator (high)
36877 Noise generator
36878 Volume control
36879 Screen and frame color(s) [36881 Vertical position of display

(24 = normal)
36883 Visible text lines (46 = normal)
37888 Begin Color RAM (VIC + 8K and up) [38400 Begin Color RAM (VIC and VIC + 3K)

[

r
I
[

[

[

[

[

[

[

f

I
I
l
I
l

APPENDIX B

BASIC Words,
Abbreviations, and Tokens

Section 1. Commands
Brief Meaning Keyword Abbreviation Token

Continue run CONT C shift 0 154
List program LIST L shift I 155
Load program LOAD L shift 0 147
New memory NEW 162
Run program RUN R shift U 138
Save program SAVE S shift A 148
Verify save VERIFY V shift E 149

Section 2. Statements
Brief Meaning Keyword Abbreviation Token

Close files CLOSE CL shift 0 160
Clear variables CLR C shift L 156
Command CMD C shift M 157
Data DATA D shift A 131
Define Function DEF D shift E 150

FN 165
Dimension array DIM D shift I 134

235

236 • VIC 20 Programmer's Notebook

-
End execution END
For .. To .. Step FOR

TO
STEP

Get from keyboard GET
Get# from device GET#
Gosub (line #) GOSUB
Goto (line#) GOTO

GO
TO

If .. Then IF
THEN

Input from keyboard INPUT
Input from device INPUT#
Let LET
Next (after FOR) NEXT
On n GOTO/SUB ON
Open (device) OPEN
Poke to memory POKE
Print to display ~ PRINT
Print to device PRINT#
Read from OAT A READ
Remark REM
Restore DATA pointer RESTORE
Return from GOSUB RETURN
Stop execution STOP
System SYS
Wait for change WAIT

Section 3. Operators
Brief Meaning Keyword

Add +
Subtract -
Multiply *
Divide I
Raise to power t
Greater than >
Equal =
Less than <
And (logical) AND
Or (logical) OR
Not (logical) NOT

E shift N
F shift 0

ST shift E
G shift E

GO shiftS
G shift 0

T shift H

I shift N
L shift E
N shift E

0 shift P
P shift 0
?
P shift R
R shift E

RE shiftS
RE shift T
S shift T
S shiftY
W shift A

Abbreviation

A shift N

N shift 0

128
129
164
169
161

141
137
203
164
139
167
133
132
136
130
145
159
151
153
152
135
143
140
142
144
158
146

Token

170
171
172
173
174
177
178
179
175
176
168

[

[

[

[

L
[

[

[

[

r
[

[

[

[

[

r
[

[

[

[

[

r
[

[

r
[

[

[

[

Section 4. Functions
Brief Meaning

Absolute value
Arctangent
Cosine
Exponent value
Function value
Integer value
Logarithm (natural)
Peek at mem
Random number
Sign of number
Sine of angle
Square root
Tangent
User machine jump
ASCII value
Character (ASC)
Left of string
Length of string
Middle of string
Right of string
Number to string
String to number
Memory left
Column number
Skip spaces
Tabulate

Appendix B • 237

Keyword Abbreviation Token

ABS A shift B 182
ATN A shift T 193
cos 190
EXP E shift X 189
FN 165
INT 181
LOG 188
PEEK P shift E 194
RND R shift N 187
SGN S shift G 180
SIN S shift I 191
SQR S shift Q 186
TAN 192
USR U shiftS .183
ASC A shiftS 198
CHR$ C shift H 199
LEFT$ LE shift F 20d
LEN 195
MID$ M shift I 202
RIGHT$ R shift I 201
STR$ ST shift R 196
VAL V shift A 197
FRE F shift R 184
POS 185
SPC S shift P 166
TAB T shift A 163

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r
[

[

[

r
[

[

[

[

[

L

[

[

[

APPENDIX C

Screen RAM Map

This chart will help you find the memory address of any loca­
tion on the 22-character by 23-line screen. The first number of
each pair is the address of the adjacent block in a VIC 20 with no
added memory. The second number is the appropriate address
when 8K or more memory is added.

239

240 • VIC 20 Programmer's Notebook

7680/4096
7702/4118
7724/4140
7746/4162
7768/4184
7790/4206
7812/4228
7834/4250
7856/4272
7878/4294
7900/4316
7922/4338
7944/4360
7966/4382
7988/4404
8010/4426
8032/4448
8054/4470
8076/4492
8098/4514
8120/4536
8142/4558
8164/4580

t t
+OK +8K
+3K UP

0 1 2 3 4 5

1 1

6 7 8 9 0 1

1 1 1 1 1 1 1 1 2 2

2 3 4 5 6 7 8 9 0 1

[

[
7701/4117 [7723/4139
7745/4161
7767/4183

[7789/4205
7811/4227
7833/4249
7855/4271 [7877/4293
7899/4315
7921/4337 [7943/4359
7965/4381
7987/4403

[8009/4425
8031/4447
8053/4469
8075/4491 [8097/4513
8119/4535
8141/4557

[8163/4579
8185/4601

t t
+OK +8K [+3K UP

[

[

[

[

[

r
r
[

[

[

[
APPENDIX D

[

[
Display Screen Codes

[When the codes in this Appendix are poked into Screen RAM,
the letter/symbol/graphic shown in either of the two Set columns
will appear on the screen. To shift between "Set A" and "Set a"

[you may

1. press the SHIFT and Commodore symbol keys together or
2. poke 240 or 242 into address 36869.

[Set A Set a Code SetA Set a Code Set A Set a Code

@ 0 J j 10 T t 20

[A a 1 K k 11 u u 21
B b 2 L I 12 v v 22
c c 3 M m 13 w w 23

[
D d 4 N n 14 X X 24
E e 5 0 0 15 y y 25
F f 6 p p 16 z z 26
G g 7 Q q 17 [27

[H h 8 R 18 £ 28
9 s s 19] 29

[241

[
242 • VIC 20 Programmer's Notebook

Set A Set a Code SetA Set a Code Set A Set a Code [
t 30 ? 63 - 96 - 31 E3 64 (] 97 [- 32 ~ A 65 ~ 98

33 rn 8 66 0 99
34 E3 c 67 0 100

[# 35 El D 68 D 101
$ 36 El E 69 IIIII 102
% 37 bJ F 70 0 103
& 38 10 G 71 liiiil 104 [39 [] H 72 ~ fB 105
(40 &J 73 [] 106
) 41 ~ J 74 [] 107 [* 42 ~ K 75 c. 108

+ 43 0 L 76 [g 109
44 lSI M 77 6J 110

[45 fZI N 78 l:l 111
46 D 0 79 UJ 112

I 47 0 p 80 e3 113
0 48 • Q 81 Ei3 114 [1 49 bJ R 82 BJ 115
2 50 ~ s 83 [] 116
3 51 10 T 84 [] 117 [4 52 [lJ u 85 [] 118
5 53 ~ v 86 Ll 119
6 54 OJ w 87 ~ 120
7 55 ~ X 88 ~ 121 [
8 56 [] y 89 0 0 122
9 57 [I] z 90 ILl 123

58 EE 91 ~ 124 [59 IJ 92 ~ 125

< 60 rn 93 ~ 126

= 61 (!fl II! 94 ~ 127

[> 62 ~ ~ 95
Note 1: When only one character is shown, that character is the same for each

Set.
Note 2: Adding 128 to the above codes will produce reverse characters. [

[

[

r
r

r
[

[

[

[

[

[

[

r
[

[

[

[

I

APPENDIX E

Color RAM Map

This chart will help you find the memory address of any color
location on the 22-character by 23-line screen. The similarity to
the Screen RAM Map is expected because each is based on the
same screen display. The first number of each pair is the address
of the adjacent block in a VIC 20 with no added memory. The
second number is the address for a VIC 20 with 8K or more of
added memory.

243

244 • VIC 20 Programmer's Notebook

38400/37888

38422/37910

38444/37932

38466/37954

38488/37976

3851 0/37998

38532/38020

38554/38042

38576/38064

38598/38086

38620/381 08

38642/38130

38664/38152

38686/38174

38708/38196

38730/38218

38752/38240

38774/38262

38796/38284

38818/38306

38840/38328

38862/38350

38884/38372

t
+OK +8K
+3K UP

0 1 2 3 4 5
1 1 1

6 7 8 9 0 1 2

1 1 1 1

3 4 5 6

/

[

r
1 1 1 2 2
7 8 9 0 1

38421/37909 r 38443/37931

38465/37953

38487/37975 [38509/37997

38531/38019

38553/38041

[38575/38063

38597/38085

38619/38107

38641/38129 [38663/38151

38685/38173

38707/38195 [38729/38217

38751/38239

38773/38261

[38795/38283

38817/38305

38839/38327

38861/38349 [38883/38371

38905/38393

+OK +8K [
+3K UP

[

[

[

[

[

r
I
(

I
[

[

r
[

[

[

[

l
[

[

[

APPENDIX F

Color Tables

COLOR CODE TABLE

This table contains the colors that can be displayed. Characters
can have only colors 0 through 7. See Chapter 9 for information
on using these codes.

0 BLACK
1 WHITE
2 RED
3 CYAN

4 PURPLE
5 GREEN
6 BLUE
7 YELLOW

8 ORANGE 12 LT. PURPLE
9 LT. ORANGE 13 LT. GREEN

10 PINK 14 LT. BLUE
11 LT. CYAN 15 LT. YELLOW

TABLE OF COLORS FOR SCREEN AND BORDER

The numbers from this table determine the border and screen
colors as indicated. They are used in the statement

POKE 36879, value

If you POKE a number 8 less than that shown in the table, the
REVERSE will be turned ON.

245

246 • VIC 20 Programmer's Notebook

Screen BLK WHT RED CYN

BLACK 8 9 10 11
WHITE 24 25 26 27
RED 40 41 42 43
CYAN 56 57 58 59
PURPLE 72 73 74 75
GREEN 88 89 90 91
BLUE 104 105 106 107
YELLOW 120 121 122 123
ORANGE 136 137 138 139
LTORN 152 153 154 155
PINK 168 169 170 171
LTCYN 184 185 186 187
LT PUR 200 201 202 203
LT GRN 216 217 218 219
LT BLU 232 233 234 235
LTYEL 248 249 250 251

Border
PUR GRN BLU

12 13 14
28 29 30
44 45 46
60 61 62
76 77 78
92 93 94

108 109 110
124 125 126
140 141 142
156 157 158
172 173 174
188 189 190
204 205 206
220 221 222
236 237 238
252 253 254

VEL

15
31
47
63
79
95

111
127
143
159
175
191
207
223
239
255

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
r

[

(

[
APPENDIX G

[

[CHR$ and ASCII Codes
[

[
This chart shows the characters corresponding to the numbers

from 0 to 191 (the others are repeats). The ASCII values are the
same as those for CHR$.

[PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

0 14 25 & 38
26 39

2
15 27 (40 r 16 -3 • 17 28) 41

4 II * 42 - • 18 29

l
5 • 30 + 43
6 - 31 44
7 Ill 19 45
8 - 32 46

[9 • 20 33 I 47
10 21 34
11 22 # 35 0 48

[
12 23 $ 36 1 49

IIIII 13 24 % 37 2 50

247

[

[
248 • VIC 20 Programmer's Notebook

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$
[

3 51 91 131 0 167
4 52 £. 92 132 ~ 168 [5 53] 93 11 133 ~ 169
6 54 t 94 13 134 [] 170
7 55 - 95 15 135 [8 171

L 8 56 E3 96 17 136 [ij 172
9 57 ~ 97 12 137 [g 173

58 rn 98 14 138 EiJ 174
59 E3 99 16 139 l:l 175 [c 60 Ej 100 f8 140 U3 176

= 61 Lj 101 -141 e3 177
~ 62 g 102 IIIII Ea 178 [? 63 [] 103 42 BJ 179
@ 64 [] 104 143

[] 180
A 65 bJ 105 - 144

[] 181

[B 66 ~ 106 - 145
[) 182

c 67 ~ 107 u 183
D 68 0 108 • 146 ~ 184
E 69 ISJ 109 • 147 ~ 185 [F 70 0 110 II 0 186
G 71 0 111 148 .:J 187
H 72 D 112 149

~ 188 [I 73 • 113 150
~ 189

74 0 114 151 I!] 190
K 75 ~ 115 152 ~ 191
l 76 0 116 153 [
M 77 Gl 117 154

N 78 181 118 155

0 79 c 119 - 156
[p 80 [!) 120 5I 157

Q 81 [] 121 • 158
R 82 [I] 122 - 159 [s 83 El3 123 1111 160
T 84 IJ 124 IJ 161
u 85 rn 125 .. 162
v 86 ITIJ 126 0 163 [w 87 ~ 127 0 164
X 88 128 0 165
y 89 129 Ill 166 [z 90 130

L

r
(

l
[

[

[

[

[_

[

[

[

[

[

[

[

APPENDIX H

Decimal to Binary and
Binary to Decimal
Conversion

Dec Binary Dec Binary Dec Binary Dec

0 00000000 64 01000000 128 10000000 192
1 00000001 65 01000001 129 10000001 193
2 00000010 66 01000010 130 10000010 194
3 00000011 67 01000011 131 10000011 195
4 00000100 68 01000100 132 10000100 196
5 00000101 69 01000101 133 10000101 197
6 00000110 70 01000110 134 10000110 198
7 00000111 71 01000111 135 10000111 199
8 00001000 72 01001000 136 10001000 200
9 00001001 73 01001001 137 10001001 201

10 00001010 74 01001010 138 10001010 202
11 00001011 75 01001011 139 10001011 203
12 00001100 76 01001100 140 10001100 204
13 00001101 77 01001101 141 10001101 205
14 00001110 78 01001110 142 10001110 206
15 00001111 79 01001111 143 10001111 207
16 00010000 80 01010000 144 10010000 208
17 00010001 81 01010001 145 10010001 209
18 00010010 82 01010010 146 10010010 210
19 00010011 83 01010011 147 10010011 211

Binary

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011

249

250 • VIC 20 Programmer's Notebook

20 00010100 84 01010100 148
21 00010101 85 01010101 149
22 00010110 86 01010110 150
23 00010111 87 01010111 151
24 00011000 88 01011000 152
25 00011001 89 01011001 153
26 00011010 90 01011010 154
27 00011011 91 01011011 155
28 00011100 92 01011100 156
29 00011101 93 01011101 157
30 00011110 94 01011110 158
31 00011111 95 01011111 159
32 00100000 96 01100000 160
33 00100001 97 01100001 161
34 00100010 98 01100010 162
35 00100011 99 01100011 163
36 00100100 100 01100100 164
37 00100101 101 01100101 165
38 00100110 102 01100110 166
39 00100111 103 01100111 167
40 00101000 104 01101000 168
41 00101001 105 01101001 169
42 00101010 106 01101010 170
43 00101011 107 01101011 171
44 00101100 108 01101100 172
45 00101101 109 01101101 173
46 00101110 110 01101110 174
47 00101111 111 01101111 175
48 00110000 112 01110000 176
49 00110001 113 01110001 177
50 00110010 114 01110010 178
51 00110011 115 01110011 179
52 00110100 116 01110100 180
53 00110101 117 01110101 181
54 00110110 118 01110110 182
55 00110111 119 01110111 183
56 00111000 120 01111000 184
57 00111001 121 01111001 185
58 00111010 122 01111010 186
59 00111011 123 01111011 187
60 00111100 124 01111100 188
61 00111101 125 01111101 189
62 00111110 126 01111110 190
63 00111111 127 01111111 191

10010100 212
10010101 213
10010110 214
10010111 215
10011000 216
10011001 217
10011010 218
10011011 219
10011100 220
10011101 221
10011110 222
10011111 223
10100000 224
10100001 225
10100010 226
10100011 227
10100100 228
10100101 229
10100110 230
10100111 231
10101000 232
10101001 233
10101010 234
10101011 235
10101100 236
10101101 237
10101110 238
10101111 239
10110000 240
10110001 241
10110010 242
10110011 243
10110100 244
10110101 245
10110110 246
10110111 247
10111000 248
10111001 249
10111010 250
10111011 251
10111100 252
10111101 253
10111110 254
10111111 255

11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r
[

Index
[

A Color(s)
Accelerate graphics, 81 border, 245-246

[
Access data, 51 generation, 134-139
Address, 113 POKE color RAM, 136-137
Adjustable clear, 97-101 reserved RAM, 135-136
Alpha character, 57 VIC, 137-139
Animation, 78 RAM, 89

[Answer blank, 35 screen, 245-246
Append, 125-126 variations, 81
Arrays, random characters, 143-145 PRINT, 134-135
Art, joystick, 202-205 Commands, 235

[
ASC, 141 Commodore symbol key, 92
ASCII, 53 Compress, 189-190
Attention-grabber, 104 Concatenating data, 145-149

Concealed identification, 215-216
8 Control(s), 165-169

[BASIC language, 90 lose, 121
Binary, system, 61-62 regain, 121
Bit values, 61 Count, step, 104
Blank space, trailing, 78 Cryptic, 58

[
Border colors, 245-246 CTRL, 13
Bouncing ball explodes, 180-182 Current key values, 115
Bubble sort, 159-160 Cursor
Buffer(s), 111 position, 65-67

keyboard, 130 FOR/NEXT, 68-69

[Build utility program, 11 POKE, 69-70
Buried data, 152-158 SPC, 67-68
Byte(s), 62 random placement, 71-73

high, 63

[
low, 63 D

c Data, 17
access, 51

Capture game, 207-208 buried, 152-158

[
Changes, memory, 55-56 concatenating, 145-149
Character(s) parsing, 149-152

alpha, 57 retrieve, 124
no-error response, 41-43 store, 124
numerical, 57 transfer, 128-129

[random, 143-145 Debugging, 26
Chip, video interface, 89 Decelerate graphics, 81
CHR$, 141 Decimal system, 60
Clear Define function, 23

[
portion of line, 99-101 DEL, 21

screen, 97-101 Delay(s), 121-124
Clock/timer, 48 indefinite, 227-229
Clocks, 111 loops, 106
Codes, keyword, 185-186 Delete, 186-187

[Codeword, 42 remarks, 214
Collected variations, 52-54 Design
Colon, 20 fall, 79

[251

[
252 • Index

[
Design - cont. GET, 27, 32-34

graphic, 74 GIGO, 146
move down, 79 GOSUB, 12 [up, 79 GOTO, 13

Diamond-shaped box, 27 Graphic(s)
Disable functions, 214-215 characters, 38
Display(s), 93 design, 74

[disappearing, 102 face, 74-77
erase portion, 99 motions, 81
re-create, 109 moving, 77-81
rising, 101-103 programming, 73-74
saving, 106-110 [shifting, 105-106 H
sinking, 102 Hiding words, 216-217
unfolding, 103-105 High byte, 63

Dual programs, 126-127 Horse, galloping, 174-176

[Housekeeping, 89
E

Encoding, 217-219
Equalizing variable lengths, 145 Identification, concealed, 215-216

L Erase, 78 Indefinite delays, 227-229
portion of display, 99 Input, 35

Errors(s) formatted, 35-40
changing, 58-59 output, 88
rejecting, 57-58 Insert, 186-187 [summary, 59 Instructions, operating, 17
trap, 57 Integer, 22
trapping, 56-59 Interface chip, video, 89

Explodes, bouncing ball, 180-182 Interleave, 127

[F
Interlude, musical, 173-174
Invisible lines, 214

Filters, response, 52 1/0,88
Flashing

screen, 229-230 J [words, 82
Joystick, 202-205 Floating point, 22

Flowchart(s), 25-29 art, 202-205

examples, 27-29 Jump table, 89

[fundamentals, 26-27 Jumping jack, 176-178

Foolproof, 59
K FOR/NEXT, 68-69

Format, 35 KERNAL, 89
Formatted input, 35-40 Key(s) [Free memory, 56 Commodore symbol, 92
Function(s), 237 disables, 130

define, 23 function, 224-226
disable, 214-215 repeat function, 124

[keys, 224-226 special purpose, 10

G
values, 115

Keyboard buffer, 130
Galloping horse, 174-176 Keypress, 11, 123
Game(s), 50 Keystroke, 10 [capture, 207-208 Keyword, 235
Generator, random number, 123 codes, 185-186

[

r
r

L

[
Lapsed time, 122
Least significant bit, 137
LEFT$, 141
LEN, 141
Light pen, 208-211

[
Line(s)

invisible, 214
multiple statement, 20
numbers, 185

[
Links, 111, 185
LIST, 13, 130

variables, 17
Listing conventions, 1 0-13
Loop,27

r delay, 106
Low byte, 63
LSB, 137

[M

Main program, 17
Memory

change, 55-56

[conservation, 19-23
free, 56
locations, 64, 85
mapped, 88

[
organization, 87
reserved, 124-125
sizes, 127-128
usable, 56

Merge, 127

[MID$, 141
Most significant bit, 137
Motion, graphic, 81-83
Moving graphics, 77-81

[
MSM, 137
Multicharacter response, 32-34
Multicolor mode, 135
Music master, 205-207
Musical interlude, 173-174

[N

No-error·

l
response character, 41-43

word, 40-41
Noise, 168-169

white, 169
Nonrepeating selection, 221-224

l Number storage, 62-64
Numbering systems, 59-62
Numerical character, 57

L

Index • 253

0
Odds, setting, 226-227
Operating instructions, 17
Operators, 236
Out of Memory, 56

p

Pack, 193-195
Paddles, 205-208
Page, zero, 112-114
Parsing data, 149-152
Password, 43
PEEK

in color RAM, 117-118
program, 116
screen RAM, 116-117

Pitch, sound, 77
Place values, 62
Pointer, 63, 111
POKE, 69-70

in color RAM, 117-118
program, 116
screen RAM, 116-117

into color RAM, 136-137
reserved RAM, 135-136

self-adjusting, 117
to VIC, 137-139

PRINT with color, 134-135
Printing, 93-95
Program(s)

build utility, 11
characteristics, 16-19
data transfer between, 128-129
documented, 18
dual, 126-127
main, 17
pack, 214
self-prompting, 17
that dog, again, 178-180
utility, 188-195

Programming
graphics, 73-74
operating speed, 23-25
self-adjusting, 115-116

Q
Quotation marks, 20

R

RAM
color, 136-137
reserved, 111, 135-136
screen, 90-92

[
254 • Index

[
Random Sort- cont.

characters, 143-145 Sheil-Metzner, 161-163
number generator, 123 Sound

Reaction speed, 50 pitch, 77 [Rectangular box, 27 variations, 81
Remark(s) pointers, reserved RAM, 115

delete, 214 remove, 19-20
statements, 18 SPC, 67-68 [Renumber, 190-192 Split-screen operation, 95-97

Repeating keys, 124 Standard subroutine, 230-231
Reserved Statements, 235

memory, 124-125 one line, 20-21

[RAM, 89, 111 Step count, 1 04
color, 135-136 STOP, 130
space pointers, 115 Storage, number, 62-64

Response STR$, 141
filters, 52 String(s) [multiple trial, 43-44 store, 125
reverse, 51-52 variables, 52
time limited, 45-48 Subroutine(s), 17

weighted, 49-51 standard, 230-231

[RESTORE, 24, 152 time limited, 46
RETURN, 13

T Reverse
letters, 10 Time

OFF, 135 lapsed, 122

[ON, 135 limited subroutine, 46

response, 51-52 Timers, 121-124

RIGHT$, 141 Title, 17

Rising display, 101-103 Tokens, 185-186

RUN, 13 Tone, 167-168 [Trailing blank space, 78
s Tutorials, SO

SAVE, 23, 130 u
display, 106-110 Unfolding display, 103-105 [Screen Utility programs, 188-195
colors, 245-246
flashing, 229-230 v
RAM, 92 VAL, 141

[use, 90-92 Variables
Scroll, 105 list, 17

slow, 13 space-saving, 151
Scrolling, 94 string, 52

independent, 95 Variations, collected, 52-54 [Selection, nonrepeating, 221-224 Video interface chip, 89
Self-adjusting programming, 115-116 Volume, 166-167
Semicolon, 22 w Separator symbol, 147
Setting odds, 226-227 White noise, 169 [Setup, 17 Word(s), 62
Sheil-Metzner sort, 161-163 flashing, 82
Shifting display, 105-106 hiding, 216-217
Skip-count, 67 No-error response, 40-41

[Slow scroll, 13
Sort z

bubble, 159-160 Zero page, 112-114

[

-

[

r
[

[

[

[

[

[

[

[

[

[

[

[

[

[
TO THE READER
Sams Computer books cover Fundamentals- Programming -Interfacing- [.•
Technology written to meet the needs of computer engineers, professionals, .
scientists, technicians, students, educators, business owners, personal com­
puterists and home hobbyists.

Our Tradition is to meet your needs
and in so doing we invite you to tell us what
your needs and interests are by completing
the following:

1. I need books on the following topics:

2. I have the following Sams titles:

3. My occupation is:

__ Scientist, Engineer

__ Personal computerist

__ Technician, Serviceman

__ Educator

__ Student

__ D P Profession~!

__ Business owner

__ Computer store owner

__ Home hobbyist

Other ________________ __

Name (print)---------------------------------

Address ______________________ ___

City State _____ Zip---------

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80

[

[

[

[

[

[

[

[

[

[

[

[
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 22089 [

The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
- or LSI "chips" are creating a second industrial revolution that will quickly involve us all. The

speed of the developments in this area is breathtaking and it becomes more and more difficult to
keep up with the rapid advances that are being made . It is also becoming difficult for newcomers
to "get on board."

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
"-materials that will permit students, engineers, scientists, technicians and o1hers to quickly learn

how to use new technologies and electronic techniques. We continue to do this through several
- means, textbooks, short courses, seminars and through the development of special electronic de·

vices and train ing aids .

.....
Our group members make their home in Blacksburg, found in the Appalachian Mountains of

- southwestern Virginia. While we didn't actively start our group collaboration until the Spring
of 1974, members of our group have been involved in digital electronics, minicomputers and

.._microcomputers for some time.

Some of our past experiences and on·going efforts include the following:

_-The design and development of what is considered to be the first popular hobbyist computer.

........

The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed several
8080-based computers, incl uding the MMD-1 system. Our most recent computer is an 8085-based
computer for educational use, and for use in small controllers .

-The Blacksburg Continuing Education SeriesT" covers subjects ranging from basic electronics
through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We are strong believers in the use of detailed experiments and

....._examples to reinforce basic concepts. This series originally started as our Bugbook series and many
titles are now being translated into Chinese, Japa nese, German and Italian.

-We have pioneered the use of small, self-contained computers in hands-on courses for micro­
....._ computer users. Many of our designs have evolved into commercial products that are marketed

by E&l Instruments and PACCOM, and are available from Group Technology, ltd., Check, VA
24072.

1..-o. -Our short courses and seminar programs have been presented throughout the world. Programs
are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi­
sion. Each series of courses provides hands-on experience with real computers and electronic
devices. Courses and seminars are provided on a regular basis, and are also provided for groups,

..._companies and schools at a site of their choosing. We are strong believers in practical labora­
tory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc . (703)
951-9030 or from Dr . Linda Leffel, Virginia Tech Continuing Education Center (703) 961-5241.

Our group members are Mr. David G. larsen, who is on the faculty of the Department of Chem­
istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blacksburg
Group, all af Blacksburg, VA.

I •

SANd--------------~·
VIC20
Programmer's
Notebook
• Has a collection of programming techniques, hints and kinks, tricks,

subroutines, and shortcuts.

• Exp lains procedures for adding memory and error trapping.

• Proclaims that KERNAL is the officer in charge of the VIC 20.

• States that two of the most powerfu I commands are PEEK and POKE.

• Discusses the main functions for handling data : ASC, CHR$, LEFT$, LEN,
MID$, RIGHT$, STR$, VAL, concatenation, parsing data, finding buried
data, bubble sort, and Sheil-Metzner sort.

• Explains methods of combining graphics, color, and sound.

• Covers ioystick, paddles, and light pen.

• Discusses privacy and program protection.

This book is equally useful to the beginner and experienced VIC 20
programmer.

Earl R. Savage graduated magna cum laude from
Hampden Sydney College with a B.S. degree. He
went on to receive a M.Ed. degree from the
University of Virginia, and studied further at the
University of Chicago, College of William and
Mary, and Old Dominion University. While in the
U.S. Air Force, he receiv.ed training in Electronic
Countermeasures.

Mr. Savage's experience has included being a science teacher and science
supervisor, a university instructor, a principal of both elementary and
secondary schools, and a Superintendent of Schools. As the Hobby Editor
for Radio-Electronics, a position he has held since 1977, he has written
several articles and a monthly column, the "Hobby Corner." He also writes
the monthly column "Education 80" in 80 Microcomputing. In addition, he
has written articles for many technical and educational magazines and
house organs. He is the author of the SAMS book BASIC Programmer's
Notebook.

Although Mr. Savage includes electronic activities in his hobbies of ham
radio (K4SDS), electronics, and microcomputer programming, he also plays
chess and bridge, and enioys photography.

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, India no 46268 U.S.A.

$14.95/22089 ISBN: 0-672-22089-X

• I

